Changes in photosynthetic activities under hypertonic conditions were studied in a terrestrial, highly desiccation-tolerant cyanobacterium, Nostoc commune, and in some desiccation-sensitive cyanobacteria. The amounts of water sustained in the colony matrix outside the N. commune cells and the cellular solute concentration were estimated by measuring the water potential, and the solute concentration was supposed to correspond to around 0.22 M sorbitol. Incubation of the colonies in 0.8 M sorbitol solution inhibited the energy transfer from the phycobilisome (PBS) anchor to PSII core complexes. At higher sorbitol concentrations, light energy absorbed by PSI, PSII, and PBS was dissipated to heat. PSI and cyclic electron flow around PSI was also deactivated by hypertonic treatment. Fv/Fm and (Fm'-F)/Fm' values started to decrease at 0.6 and 0.3 M sorbitol and reached zero at 1.0 and 0.8 M, respectively. Decreases in these two fluorescence parameters corresponded to the decreases in PSII fluorescence (F695) and photosynthetic CO2 fixation, respectively. The intensity of delayed light emission started to decrease at 1.0 M sorbitol and became negligible at 4.0 M. Comparing these changes in N. commune with those in desiccation-sensitive species, we found that N. commune cells actively deactivates photosynthetic systems on sensing water loss.
A desiccation-tolerant cyanobacterium, Nostoc commune, shows unique responses to dehydration. These responses are: (i) loss of PSII activity in parallel with the loss of photosynthesis; (ii) loss of PSI activity; and (iii) dissipation of light energy absorbed by pigment-protein complexes. In this study, the deactivation of PSII is shown to be important in avoiding photoinhibition when the Calvin-Benson cycle is repressed by dehydration. Furthermore, our evidence suggests that dissipation of light energy absorbed by PSII blocks photoinhibition under strong light in dehydrated states.
Rooting of the difficult-to-root Ixora acuminata was improved by application of a combination of indolebutyric acid (IBA) and napthalenacetic acid (NAA) to the base of cuttings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.