Timer-based mechanisms are often used to help a given (sink) node select the best helper node from among many available nodes. In these, a node transmits a packet when its timer expires. The timer value is a monotone non-increasing function of its local suitability metric, which ensures that the best node is the first to transmit and is selected successfully if no other node's timer expires within a "vulnerability" window after its timer expiry and so long as the sink can hear the available nodes. In this paper, we show that the optimal metricto-timer mapping that (i) maximizes the probability of successful selection or (ii) minimizes the average selection time subject to a minimum constraint on the probability of success, maps the metric into a set of discrete timer values. We specify, in closed-form, the optimal scheme as a function of the maximum selection duration, the vulnerability window, and the number of nodes. An asymptotic characterization of the optimal scheme turns out to be elegant and insightful. For any probability distribution function of the metric, the optimal scheme is scalable, distributed, and performs much better than the popular inverse metric timer mapping. It even compares favorably with splitting-based selection, when the latter's feedback overhead is accounted for.
Relay selection for cooperative communications promises significant performance improvements, and is, therefore, attracting considerable attention. While several criteria have been proposed for selecting one or more relays, distributed mechanisms that perform the selection have received relatively less attention. In this paper, we develop a novel, yet simple, asymptotic analysis of a splitting-based multiple access selection algorithm to find the single best relay. The analysis leads to simpler and alternate expressions for the average number of slots required to find the best user. By introducing a new 'contention load' parameter, the analysis shows that the parameter settings used in the existing literature can be improved upon. New and simple bounds are also derived. Furthermore, we propose a new algorithm that addresses the general problem of selecting the best Q ≥ 1 relays, and analyze and optimize it. Even for a large number of relays, the algorithm selects the best two relays within 4.406 slots and the best three within 6.491 slots, on average. We also propose a new and simple scheme for the practically relevant case of discrete metrics. Altogether, our results develop a unifying perspective about the general problem of distributed selection in cooperative systems and several other multi-node systems.
Abstract-In a vehicular network, every vehicle broadcasts update messages that contain location and speed information periodically to its one hop neighbors. The broadcast efficiency measures the average rate at which a vehicle receives these packets from any of its neighbors. As the node density increases, heightened interference lowers broadcast efficiency if congestion control mechanism is not used. In this paper, we analyze the broadcast efficiency under Rayleigh fading channel, and provide congestion control and power control strategies that maximize the efficiency. A worst-case guaranteed strategy achieving at least 95% of the optimal is also provided for cases when the network nodes have high mobility. Ns-2 simulations show that our analytical results accurately predict the system dynamic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.