A laboratory staged anaerobic fluidized membrane bioreactor (SAF-MBR) system was applied to the treatment of primary clarifier effluent from a domestic wastewater treatment plant with temperature decreasing from 25 to 10 °C. At all temperatures and with a total hydraulic retention time of 2.3 h, overall chemical oxygen demand (COD) and biochemical oxygen demand (BOD5) removals were 89% and 94% or higher, with permeate COD and BOD5 of 30 and 7 mg/L or lower, respectively. No noticeable negative effects of low temperature on organic removal were found, although a slight increase to 3 mg/L in volatile fatty acids concentrations in the effluent was observed. Biosolids production was 0.01-0.03 kg volatile suspended solids/kg COD, which is far less than that with aerobic processes. Although the rate of trans-membrane pressure at the membrane flux of 9 L/m(2)/h increased as temperature decreased, the SAF-MBR was operated for longer than 200 d before chemical cleaning was needed. Electrical energy potential from combustion of the total methane production (gaseous and dissolved) was more than that required for system operation.
A two-stage anaerobic fluidized-bed membrane bioreactor (SAF-MBR) system was applied for the treatment of primary-settled domestic wastewater that was further pre-treated by either 10 μm filtration or 1 mm screening. While the different pre-treatment options resulted in different influent qualities, the effluent qualities were quite similar. In both cases at a total hydraulic retention time of 2.3 h and 25 °C, chemical oxygen demand and biochemical oxygen demand (BOD5) removals were 84-91% and 92-94%, with effluent concentrations lower than 25 and 7 mg/L, respectively. With a membrane flux of 6-12 L/m(2)/h, trans-membrane pressure remained below 0.2 bar during 310 d of continuous operation without need for membrane chemical cleaning or backwashing. Biosolids production was estimated to be 0.028-0.049 g volatile suspended solids/g BOD5, which is far less than that with comparable aerobic processes. Electrical energy production from combined heat and power utilization of the total methane produced (gaseous and dissolved) was estimated to be more than sufficient for total system operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.