Portland cement concrete is known to have good fire resistance; however, its strength would be degraded after exposure to the temperatures of fire. Repeated low-velocity impacts are a type of probable accidental load in many types of structures. Although there is a rich body of literature on the residual mechanical properties of concrete after high temperature exposure, the residual repeated impact performance of concrete has still not been well explored. For this purpose, an experimental study was conducted in this work to evaluate the effect of high temperatures on the repeated impact strength of normal strength concrete. Seven identical concrete patches with six disc specimens each were cast and tested using the ACI 544-2R repeated impact setup at ambient temperature and after exposure to 100, 200, 300, 400, 500 and 500 °C. Similarly, six cubes and six prisms from each patch were used to evaluate the residual compressive and flexural strengths at the same conditions. Additionally, the scattering of the impact strength results was examined using three methods of the Weibull distribution, and the results are presented in terms of reliability. The test results show that the cracking and failure impact numbers of specimens heated to 100 °C reduced slightly by only 2.4 and 3.5%, respectively, while heating to higher temperatures deteriorated the impact resistance much faster than the compressive and flexural strengths. The percentage reduction in impact resistance at 600 °C was generally higher than 96%. It was also found that the deduction trend of the impact strength with temperature is more related to that of the flexural strength than the compressive strength. The test results also show that, within the limits of the adopted concrete type and conducted tests, the strength reduction after high temperature exposure is related to the percentage weight loss.
Despite the fact that the mechanical properties of Engineered Cementitious Composites (ECC) after high-temperature exposure are well investigated in the literature, the repeated impact response of ECC is not yet explored. Aiming to evaluate the residual impact response of ECC subjected to sub-high temperatures under repeated drop weight blows, the ACI 544-2R repeated impact test was utilized in this study. Disk impact specimens (150 mm diameter and 64 mm thickness) were prepared from the M45 ECC mixture but using polypropylene fibers, while similar 100 mm cube specimens and 100 × 100 × 400 mm prism specimens were used to evaluate the compressive and flexural strengths. The specimens were all cast, cured, heated, cooled, and tested under the same conditions and at the same age. The specimens were subjected to three temperatures of 100, 200 and 300 °C, while a group of specimens was tested without heating as a reference group. The test results showed that heating to 100 and 200 °C did not affect the impact resistance noticeably, where the retained cracking and failure impact numbers and ductility were higher or slightly lower than those of unheated specimens. On the other hand, exposure to 300 °C led to a serious deterioration in the impact resistance and ductility. The retained failure impact numbers after exposure to 100, 200, and 300 °C were 313, 257, and 45, respectively, while that of the reference specimens was 259. The results also revealed that the impact resistance at this range of temperature showed a degree of dependency on the compressive strength behavior with temperature.
The repeated impact performance of engineered cementitious composites (ECCs) is not well explored yet, especially after exposure to severe conditions, such as accidental fires. An experimental study was conducted to evaluate the degradation of strength and repeated impact capacity of ECCs reinforced with Polypropylene fibers after high temperature exposure. Compressive strength and flexural strength were tested using cube and beam specimens, while disk specimens were used to conduct repeated impact tests according to the ACI 544-2R procedure. Reference specimens were tested at room temperature, while three other groups were tested after heating to 200, 400 and 600 °C and naturally cooled to room temperature. The test results indicated that the reference ECC specimens exhibited a much higher failure impact resistance compared to normal concrete specimens, which was associated with a ductile failure showing a central surface fracture zone and fine surface multi-cracking under repeated impacts. This behavior was also recorded for specimens subjected to 200 °C, while the exposure to 400 and 600 °C significantly deteriorated the impact resistance and ductility of ECCs. The recorded failure impact numbers decreased from 259 before heating to 257, 24 and 10 after exposure to 200, 400 and 600 °C, respectively. However, after exposure to all temperature levels, the failure impact records of ECCs kept at least four times higher than their corresponding normal concrete ones.
Despite that concrete is a fire-resisting construction material, its microstructure suffers significant chemical and physical changes when subjected to temperatures higher than 400 oC. Therefore, the combined effect of unexpected impacts and fire can lead to the collapse of the structure. To evaluate this combined effect, an experimental program was directed in this study using the ACI 544-2R repeated impact test method. Shallow cylindrical specimens with 150 mm diameter and 64 mm depth were prepared to evaluate the cracking and failure impact strengths of normal strength concrete (NC) and engineered cementitious composites (ECC). The ECC mixture was reinforced with 2% of polypropylene fibers. In addition to the impact strength, the compressive and flexural strengths of NC and ECC mixtures were also investigated. The impact, compressive and flexural tests were performed on unheated specimens and others heated to 500 oC to evaluate the residual strengths of NC and ECC mixtures. The results showed that before heating, ECC exhibited a failure impact performance that is approximately 6 times more ductile than that of NC, where the retained failure impact numbers of NC and ECC were 57 and 259 blows, respectively. However, both mixtures lost approximately 95% of their impact strengths after exposure to 500 oC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.