This paper proposes a novel linear quadratic regulator (LQR) weight selection algorithm by synthesizing the algebraic Riccati equation (ARE) with the Lagrange multiplier method for command following applications of a 2 degree of freedom (DoF) torsion system. The optimal performance of LQR greatly depends on the elements of weighting matrices Q and R. However, normally these weighting matrices are chosen by a trial and error approach which is not only time consuming but cumbersome. Hence, to address this issue, blending the design criteria in time domain with the ARE, we put forward an algebraic weight selection algorithm, which makes the LQR design both simple and modular. Moreover, to estimate the velocity of a servo angle, a high gain observer (HGO) is designed and integrated with the LQR control scheme. The efficacy of the proposed control scheme is tested on a benchmark 2 DoF torsion system for a trajectory tracking application. Both the steady state and dynamic characteristics of the proposed controller are assessed. The experimental results accentuate that the proposed HGO based LQR scheme can guarantee the system to attain the design requirements with minimal vibrations and tracking errors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.