Background Surveillance for circulating emerging diseases of economic importance has a major role in the rapid response to major pathogen outbreaks. Foot-and-mouth disease virus (FMDV) is one of the significant endemic viruses in Egypt. FMDV is periodically investigated for monitoring evolution and emergence of new variants. The genetic characterization of foot-and-mouth disease (FMD) virus serotype A responsible for recent outbreaks of FMD in Egypt was determined. Methods Samples were collected from different locations and virus isolation was performed using BHK-21 cells. Viral RNA was extracted and samples were screened for FMDV using real-time RT-PCR. DNA sequence analysis was performed and computational and bioinformatics analyses were used to determine the substitution rates and phylogenetic relationship. Results Sequence and phylogenetic analyses of full-length 1D region of FMDV samples collected from different governorates in 2020 showed close similarity to Egyptian FMDV strains from serotype A-African topotype-G-IV with genetic variation of 6.5%. Recently isolated FMDV strains showed high genetic variations from locally used vaccine strains in the major antigenic sites of VP1 region. Conclusions Although, efforts made by the veterinary authorities to implement an effective mass vaccination plan, the recently detected FMDV strains in this study could not be subtyped using the FMDV primers routinely used for molecular serotyping. These dissimilarities raise the alarm for reconsideration of the FMDV isolates used in vaccine manufacture. Clearly close monitoring of FMD in Egypt is urgently required to define the risks of future outbreaks and to ensure appropriate control measures against FMD major outbreaks.
Background and Aim: Lumpy skin disease (LSD) is a contagious viral disease that has great economic losses among Egyptian breeding flocks. The present study was designed to compare the results of different diagnostic approaches used for the diagnosis of LSD virus (LSDV). Materials and Methods: A total of 73 skin nodule samples were collected from suspected infected cattle with LSDV from some Egyptian governorates during 2019 and 2020. Trials for virus isolation (VI) and identification on embryonated chicken eggs (ECEs) were conducted. Molecular detection, histopathological, and immunohistochemical examination were also conducted. Results: The virus was isolated into ECEs, and 58 samples of 73 were positive and gave a characteristic pock lesion on the chorioallantoic membrane. Twenty-two representative nodular skin specimens of the 58 positive samples were selected to be used for molecular, histopathological, and immunohistochemistry (IHC) diagnosis. Conventional polymerase chain reaction succeeded in detecting LSDV DNA in all tested 22 skin nodule samples. Histological examination of skins of different cases revealed various alterations depending on the stage of infection. IHC was used as a confirmatory test for detecting LSDV antigen in the tissues of the skin nodules of infected cattle using specific anti-LSDV antibodies. Lumpy skin viral antigen was detected within the cytoplasm of the epidermal basal cells layer and prickle cell and within the cytoplasm of the hair follicles' epithelial outer and inner roots. Conclusion: This study confirmed the prevalence of LSDV infection in different Egyptian governorates during 2019 and 2020. In addition, histopathology and IHC could be potential methods to confirm Lumpy skin disease infection besidesVI and molecular detection.
In the present study, forty-three fecal samples were collected between 2018 and 2020, were tested for bovine Rotavirus (RBV) by rapid commercial strip test, Ag detection sandwich ELISA and RT-PCR for screening and matching of sensitivity and specificity. Our results revealed that seven samples (7/43; 16.2%) were positive by rapid test, fourteen and ten samples were positive by Ag detection ELISA (14/43; 32.5%) and RT-PCR (10/43; 23.2%), respectively. Sequence analysis for one positive sample showed its complete identity with the recent BRV Egyptian strains which reassures the vaccine reliability and negates any recent virus evolution. Meanwhile, comparison between both the rapid test and RT-PCR and ELISA, the sensitivity was 50% and 71.5% respectively, while specificity was identical. In conclusions, ELISA can be considered as a simple, sensitive and reliable test for BRV detection and devoid the drawbacks of other tests.
Sheep pox is a viral diseases of sheep characterized by fever, generalized papules or nodules, vesicles (rarely), lesions in internal organs and death. Sheeppox virus (SPPV) is the causative agents of Sheeppox, together with goat pox virus (GPV) and lumpy skin disease virus (LSDV) make up the genus Capri poxvirus in the family Poxviridae. The aim of the current study is to monitor and follow up the current situation of Sheeppox (SPPV) in Egypt. A total of thirty-two samples (scabs, biopsies from skin nodules and necropsies from internal organs) were collected from suspected infected sheep with SPPV from two Egyptian governorates (Beheira and Giza) during the summer season of 2018 and 2019. Virus isolation into embryonated chicken eggs (ECEs), transmission electron microscope (TEM), and molecular identification were carried out. Our results revealed that nineteen samples (19/32; 56.4%) were positive based on virus isolation into ECEs. Two representative positive samples were examined using TEM that showed protein filaments projected from the external membrane. Meanwhile, fifteen samples out of nineteen positive samples from virus isolation (15/19; 78.9%) were positive based on polymerase chain reaction (PCR) followed by sequencing and phylogenetic analysis for representative two samples, which revealed high percentage of identity with SPPV reference stains from different countries including Egypt. In conclusions, our findings revealed that the circulation of SPPV within the Egyptian field. Further studies and surveillance are required to monitor the virus evolution and transmission pathways to better understand the virus pathobiology that will help for SPPV control.
Background and Aim: Bovine papillomaviruses (BPV) are a heterogeneous group of oncoviruses, distributed globally, which produce major economic losses. In the current study, we compared the results of different diagnostic approaches and compared the strains identified in this study with previously characterized strains at local and international levels. Materials and Methods: Samples of skin warts were collected from five bovines with generalized papillomatosis from two Egyptian provinces, Menya and Ismailia, in 2020. Electron microscopy, molecular characterization, histopathological, and immunohistochemical examination were performed. Results: BPV was detected using electron microscopy in the collected samples. Using molecular characterization, BPV-2 was successfully identified for 1st time in Egypt. The strain has 99.6% identity with the BPV-2 reference strains obtained from GenBank. These results were supported by histopathology and immunohistochemistry examination. Partial nucleotide sequences of the L1 gene were submitted to GenBank with accession numbers MW289843 and MW289844. Conclusion: BPV-2 was reported for 1st time in the current study. The strain was identified grossly, microscopically, and pathologically and confirmed using molecular approaches. All results were consistent. The sequence analysis revealed that this strain has high sequence similarity to the reference Deltapapillomavirus-4, BPV-2 strains from Brazil and China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.