Background Egypt forms a home for the highest number of recorded Mantodea species of the Palaearctic Region. The status and ecology of such diversity are far from being completely understood. Main body Through this study, the similarity of Mantodea species composition among Egyptian ecological zones has been examined by using the Sørensen-Dice coefficient, beside the calculation of species richness for each zone. Also, maximum entropy (Maxent) modeling was used to estimate the potential distribution of Mantodea species throughout the country. Three topographical and 19 bioclimatic variables have been used to estimate the current status of all Mantodea species in Egypt. The collected materials of adult mantis have been used to analyze the seasonality of 14 Egyptian common genera. Our results indicated that there was a high faunal similarity between the Western and Eastern deserts, the coastal strip, and the lower Nile valley. The lowest similarity was between Gebel Elba and all other zones. The analysis of habitat suitability of Mantodea in Egypt was fragmentary and focused on different distinct ecological zones. Altitude was the most effective ecological factor that affected Mantodea distribution as a group. Analysis of seasonality data of the common genera of Mantodea indicated that all are found in summer except for Miomantis, Severinia, and Sinaiella. Conclusion Our results can be used as a basis for future studies of the ecology of certain species and conservation of this interesting group in Egypt.
Egyptian flower mantis Blepharopsis mendica (Order: Mantodea) is a widespread mantis species throughout the southwest Palearctic region. The ecological and geographical distribution of such interesting species is rarely known. So, through this work, habitat suitability models for its distribution through Egyptian territory were created using MaxEnt software from 90 occurrence records. One topographic (altitude) and eleven bioclimatic variables influencing the species distribution were selected to generate the models. The predicted distribution in Egypt was focused on the Delta, South Sinai, the north-eastern part of the country, and some areas in the west including Siwa Oasis. Temporal analysis between the two periods (1900–1961) and (1961–2017) show current reduction of this species distribution through Delta and its surrounding areas, may be due to urbanization. On the other hand, it increases in newly protected areas of South Sinai. Under the future climate change scenario, the MaxEnt model predicted the habitat gains for B. mendica in RCP 2.6 for 2070 and loss of habitat in RCP 8.5 for the same year. Our results can be used as a basis for conserving this species not only in Egypt, but also throughout the whole of its range, also, it show how the using of geo-information could help in studying animal ecology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.