Single-photon lidar has emerged as a prime candidate technology for depth imaging through challenging environments. Until now, a major limitation has been the significant amount of time required for the analysis of the recorded data. Here we show a new computational framework for real-time three-dimensional (3D) scene reconstruction from single-photon data. By combining statistical models with highly scalable computational tools from the computer graphics community, we demonstrate 3D reconstruction of complex outdoor scenes with processing times of the order of 20 ms, where the lidar data was acquired in broad daylight from distances up to 320 metres. The proposed method can handle an unknown number of surfaces in each pixel, allowing for target detection and imaging through cluttered scenes. This enables robust, real-time target reconstruction of complex moving scenes, paving the way for single-photon lidar at video rates for practical 3D imaging applications.
Recently, time-of-flight LiDAR using the single-photon detection approach has emerged as a potential solution for three-dimensional imaging in challenging measurement scenarios, such as over distances of many kilometres. The high sensitivity and picosecond timing resolution afforded by single-photon detection offers high-resolution depth profiling of remote, complex scenes while maintaining low power optical illumination. These properties are ideal for imaging in highly scattering environments such as through atmospheric obscurants, for example fog and smoke. In this paper we present the reconstruction of depth profiles of moving objects through high levels of obscurant equivalent to five attenuation lengths between transceiver and target at stand-off distances up to 150 m. We used a robust statistically based processing algorithm designed for the real time reconstruction of single-photon data obtained in the presence of atmospheric obscurant, including providing uncertainty estimates in the depth reconstruction. This demonstration of real-time 3D reconstruction of moving scenes points a way forward for high-resolution imaging from mobile platforms in degraded visual environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.