Background: The claudin (CLDN) genes encode a family of proteins important in tight junction formation and function. Recently, it has become apparent that CLDN gene expression is frequently altered in several human cancers. However, the exact patterns of CLDN expression in various cancers is unknown, as only a limited number of CLDN genes have been investigated in a few tumors.
Claudin proteins form a large family of integral membrane proteins crucial for tight junction formation and function. Our previous studies have revealed that claudin-3 and claudin-4 proteins are highly overexpressed in ovarian cancer. To clarify the roles of claudins in ovarian tumorigenesis, we have generated human ovarian surface epithelial (HOSE) cells constitutively expressing wild-type claudin-3 and claudin-4. Expression of these claudins in HOSE cells increased cell invasion and motility as measured by Boyden chamber assays and wound-healing experiments. Conversely, small interfering RNA (siRNA)-mediated knockdown of claudin-3 and claudin-4 expression in ovarian cancer cell lines reduced invasion. Claudin expression also increased cell survival in HOSE cells but did not significantly affect cell proliferation. Moreover, the claudin-expressing ovarian epithelial cells were found to have increased matrix metalloproteinase-2 (MMP-2) activity indicating that claudin-mediated increased invasion might be mediated through the activation of MMP proteins. However, siRNA inactivation of claudins in ovarian cancer cell lines did not have a significant effect on the high endogenous MMP-2 activity present in these cells, showing that malignant cells have alternative or additional pathways to fully activate MMP-2. Taken together, our results suggest that claudin overexpression may promote ovarian tumorigenesis and metastasis through increased invasion and survival of tumor cells. (Cancer Res 2005; 65(16): 7378-85)
Crucial transitions in cancer-including tumor initiation, local expansion, metastasis, and therapeutic resistance-involve complex interactions between cells within the dynamic tumor ecosystem. Transformative single-cell genomics technologies and spatial multiplex in situ methods now provide an opportunity to interrogate this complexity at unprecedented resolution. The Human Tumor Atlas Network (HTAN), part of the National Cancer Institute (NCI) Cancer Moonshot Initiative, will establish a clinical, experimental, computational, and organizational framework to generate informative and accessible three-dimensional atlases of cancer transitions for a diverse set of tumor types. This effort complements both ongoing efforts to map healthy organs and previous largescale cancer genomics approaches focused on bulk sequencing at a single point in time. Generating single-cell, multiparametric, longitudinal atlases and integrating them with clinical outcomes should help identify novel predictive biomarkers and features as well as therapeutically relevant cell types, cell states, and cellular interactions across transitions. The resulting tumor atlases should have a profound impact on our understanding of cancer biology and have the potential to improve cancer detection, prevention, and therapeutic discovery for better precision-medicine treatments of cancer patients and those at risk for cancer.Cancer forms and progresses through a series of critical transitions-from pre-malignant to malignant states, from locally contained to metastatic disease, and from treatment-responsive to treatment-resistant tumors (Figure 1). Although specifics differ across tumor types and patients, all transitions involve complex dynamic interactions between diverse pre-malignant, malignant, and non-malignant cells (e.g., stroma cells and immune cells), often organized in specific patterns within the tumor
Cholangiocarcinomas (CCA) are aggressive cancers, with a high mortality and poor survival rate. Only radical surgery offers patients some hope of cure; however, most patients are not surgical candidates because of the late diagnosis secondary to relatively poor accuracy diagnostic means. MicroRNAs (miRs) are involved in every cancer examined, but they have not been evaluated in primary CCA. In this study, miR arrays were performed on 5 primary CCAs and 5 normal bile duct specimens (NBD). Several miRs were dysregulated, and miR-21 was overexpressed, in CCAs. miR-21 differential expression in these 10 specimens was verified with quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). To validate these findings, qRT-PCR for miR-21 was then performed on 18 additional primary CCAs and 12 normal liver specimens. MiR-21 was 95% sensitive and 100% specific in distinguishing between CCA and normal tissues, with an area under the Receiver Operating Characteristic (ROC) curve of 0.995. Inhibitors of miR-21 increased protein levels of programmed cell death 4 (PDCD4) and tissue inhibitor of metalloproteinases 3 (TIMP3). Notably, messenger RNA (mRNA) levels of TIMP3 were significantly lower in CCAs than in normals. Conclusions MiR-21 is overexpressed in human CCAs. Furthermore, miR-21 may be oncogenic, at least in part, by inhibiting PDCD4 and TIMP3. Finally, these data suggest that TIMP3 is a candidate tumor suppressor gene in the biliary tree.
Background & Aims-Barrett's esophagus (BE) is a highly premalignant disease that predisposes to the development of esophageal adenocarcinoma (EAC); however, the involvement of microRNAs (miRs) in BE-EAC carcinogenic progression is not known.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.