Manufacturing automation is a double-edged sword, on one hand, it increases productivity of production system, cost reduction, reliability, etc. However, on the other hand it increases the complexity of the system. This has led to the need of efficient solutions such as artificial techniques. Data and experiences are extracted from experts that usually rely on common sense when they solve problems. They also use vague and ambiguous terms. However, knowledge engineer would have difficulties providing a computer with the same level of understanding. To resolve this situation, this article proposed fuzzy logic to know how the authors can represent expert knowledge that uses fuzzy terms in supervising complex industrial processes as a first step. As a second step, adopting one of the powerful techniques of machine learning, which is Support Vector Machine (SVM), the authors want to classify data to determine state of the supervision system and learn how to supervise the process preserving habitual linguistic used by operators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.