IMPORTANCE Atypical eye gaze is an early-emerging symptom of autism spectrum disorder (ASD) and holds promise for autism screening. Current eye-tracking methods are expensive and require special equipment and calibration. There is a need for scalable, feasible methods for measuring eye gaze.OBJECTIVE Using computational methods based on computer vision analysis, we evaluated whether an app deployed on an iPhone or iPad that displayed strategically designed brief movies could elicit and quantify differences in eye-gaze patterns of toddlers with ASD vs typical development.
DESIGN, SETTING, AND PARTICIPANTSA prospective study in pediatric primary care clinics was conducted from December 2018 to March 2020, comparing toddlers with and without ASD. Caregivers of 1564 toddlers were invited to participate during a well-child visit. A total of 993 toddlers (63%) completed study measures. Enrollment criteria were aged 16 to 38 months, healthy, English-or Spanish-speaking caregiver, and toddler able to sit and view the app. Participants were screened with the Modified Checklist for Autism in Toddlers-Revised With Follow-up during routine care. Children were referred by their pediatrician for diagnostic evaluation based on results of the checklist or if the caregiver or pediatrician was concerned. Forty toddlers subsequently were diagnosed with ASD.EXPOSURES A mobile app displayed on a smartphone or tablet.
MAIN OUTCOMES AND MEASURESComputer vision analysis quantified eye-gaze patterns elicited by the app, which were compared between toddlers with ASD vs typical development.RESULTS Mean age of the sample was 21.1 months (range, 17.1-36.9 months), and 50.6% were boys, 59.8% White individuals, 16.5% Black individuals, 23.7% other race, and 16.9% Hispanic/Latino individuals. Distinctive eye-gaze patterns were detected in toddlers with ASD, characterized by reduced gaze to social stimuli and to salient social moments during the movies, and previously unknown deficits in coordination of gaze with speech sounds. The area under the receiver operating characteristic curve discriminating ASD vs non-ASD using multiple gaze features was 0.90 (95% CI, 0.82-0.97).
CONCLUSIONS AND RELEVANCEThe app reliably measured both known and new gaze biomarkers that distinguished toddlers with ASD vs typical development. These novel results may have potential for developing scalable autism screening tools, exportable to natural settings, and enabling data sets amenable to machine learning.
Background: This study is part of a larger research program focused on developing objective, scalable tools for digital behavioral phenotyping. We evaluated whether a digital app delivered on a smartphone or tablet using computer vision analysis (CVA) can elicit and accurately measure one of the most common early autism symptoms, namely failure to respond to a name call. Methods: During a pediatric primary care well-child visit, 910 toddlers, 17-37 months old, were administered an app on an iPhone or iPad consisting of brief movies during which the child's name was called three times by an examiner standing behind them. Thirty-seven toddlers were subsequently diagnosed with autism spectrum disorder (ASD). Name calls and children's behavior were recorded by the camera embedded in the device, and children's head turns were coded by both CVA and a human. Results: CVA coding of response to name was found to be comparable to human coding. Based on CVA, children with ASD responded to their name significantly less frequently than children without ASD. CVA also revealed that children with ASD who did orient to their name exhibited a longer latency before turning their head. Combining information about both the frequency and the delay in response to name improved the ability to distinguish toddlers with and without ASD. Conclusions: A digital app delivered on an iPhone or iPad in real-world settings using computer vision analysis to quantify behavior can reliably detect a key early autism symptom-failure to respond to name. Moreover, the higher resolution offered by CVA identified a delay in head turn in toddlers with ASD who did respond to their name. Digital phenotyping is a promising methodology for early assessment of ASD symptoms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.