Abstract. One of the consequences of recent glacier recession in the Cordillera Blanca, Peru, is the risk of glacial lake outburst floods (GLOFs) from lakes that have formed at the base of retreating glaciers. GLOFs are often triggered by avalanches falling into glacial lakes, initiating a chain of processes that may culminate in significant inundation and destruction downstream. This paper presents simulations of all of the processes involved in a potential GLOF originating from Lake Palcacocha, the source of a previously catastrophic GLOF on 13 December 1941, killing about 1800 people in the city of Huaraz, Peru. The chain of processes simulated here includes (1) avalanches above the lake; (2) lake dynamics resulting from the avalanche impact, including wave generation, propagation, and run-up across lakes; (3) terminal moraine overtopping and dynamic moraine erosion simulations to determine the possibility of breaching; (4) flood propagation along downstream valleys; and (5) inundation of populated areas. The results of each process feed into simulations of subsequent processes in the chain, finally resulting in estimates of inundation in the city of Huaraz. The results of the inundation simulations were converted into flood intensity and preliminary hazard maps (based on an intensity-likelihood matrix) that may be useful for city planning and regulation. Three avalanche events with volumes ranging from 0.5 to 3 × 10 6 m 3 were simulated, and two scenarios of 15 and 30 m lake lowering were simulated to assess the potential of mitigating the hazard level in Huaraz. For all three avalanche events, three-dimensional hydrodynamic models show large waves generated in the lake from the impact resulting in overtopping of the damming moraine. Despite very high discharge rates (up to 63.4 × 10 3 m 3 s −1 ), the erosion from the overtopping wave did not result in failure of the damming moraine when simulated with a hydromorphodynamic model using excessively conservative soil characteristics that provide very little erosion resistance. With the current lake level, all three avalanche events result in inundation in Huaraz due to wave overtopping, and the resulting preliminary hazard map shows a total affected area of 2.01 km 2 , most of which is in the high hazard category. Lowering the lake has the potential to reduce the affected area by up to 35 %, resulting in a smaller portion of the inundated area in the high hazard category.
Abstract. One of the consequences of recent glacier recession in the Cordillera Blanca, Peru, is the risk of Glacial Lake Outburst Floods (GLOFs) from lakes that have formed at the base of retreating glaciers. GLOFs are often triggered by avalanches falling into glacial lakes, initiating a chain of processes that may culminate in significant inundation and destruction downstream. This paper presents simulations of all of the processes involved in a potential GLOF originating from Lake Palcacocha, the source of a previously catastrophic GLOF on 13 December 1941, killing 1800 people in the city of Huaraz, Peru. The chain of processes simulated here includes: (1) avalanches above the lake, (2) lake dynamics resulting from the avalanche impact, including wave generation, propagation, and run-up across lakes, (3) terminal moraine overtopping and dynamic moraine erosion simulations to determine the possibility of breaching, (4) flood propagation along downstream valleys; and (5) inundation of populated areas. The results of each process feed into simulations of subsequent processes in the chain, finally resulting in estimates of inundation in the city of Huaraz. The results of the inundation simulations were converted into flood intensity and hazard maps (based on an intensity-likelihood matrix) that may be useful for city planning and regulation. Three avalanche events with volumes ranging from 0.5–3 × 106 m3 were simulated, and two scenarios of 15 and 30 m lake lowering were simulated to assess the potential of mitigating the hazard level in Huaraz. For all three avalanche events, three-dimensional hydrodynamic models show large waves generated in the lake from the impact resulting in overtopping of the damming-moraine. Despite very high discharge rates (up to 63.4 &times 103 m3 s−1), the erosion from the overtopping wave did not result in failure of the damming-moraine when simulated with a hydro-morphodynamic model using excessively conservative soil characteristics that provide very little erosion resistance. With the current lake level, all three avalanche events result in inundation in Huaraz due to wave overtopping, and the resulting hazard map shows a total affected area of 2.01 km2, most of which is in the high-hazard category. Lowering the lake has the potential to reduce the affected area by up to 35 % resulting in a smaller portion of the inundated area in the high-hazard category.
Abstract. This paper studies the lake dynamics for avalanche-triggered glacial lake outburst floods (GLOFs) in the Cordillera Blanca mountain range in Ancash, Peru. As new glacial lakes emerge and existing lakes continue to grow, they pose an increasing threat of GLOFs that can be catastrophic to the communities living downstream. In this work, the dynamics of displacement waves produced from avalanches are studied through three-dimensional hydrodynamic simulations of Lake Palcacocha, Peru, with an emphasis on the sensitivity of the lake model to input parameters and boundary conditions. This type of avalanche-generated wave is an important link in the GLOF process chain because there is a high potential for overtopping and erosion of the lake-damming moraine. The lake model was evaluated for sensitivity to turbulence model and grid resolution, and the uncertainty due to these model parameters is significantly less than that due to avalanche boundary condition characteristics. Wave generation from avalanche impact was simulated using two different boundary condition methods. Representation of an avalanche as water flowing into the lake generally resulted in higher peak flows and overtopping volumes than simulating the avalanche impact as mass–momentum inflow at the lake boundary. Three different scenarios of avalanche size were simulated for the current lake conditions, and all resulted in significant overtopping of the lake-damming moraine. Although the lake model introduces significant uncertainty, the avalanche portion of the GLOF process chain is likely to be the greatest source of uncertainty. To aid in evaluation of hazard mitigation alternatives, two scenarios of lake lowering were investigated. While large avalanches produced significant overtopping waves for all lake-lowering scenarios, simulations suggest that it may be possible to contain waves generated from smaller avalanches if the surface of the lake is lowered.
With the growth of student interest in humanitarian engineering development projects, a critical assessment of the strengths and weaknesses of this type of work is crucial to success. While a number of models exist for joining development with technical expertise in humanitarian engineering projects, this paper focuses on the experiences of students working on a program in Peru within the Greater Austin Chapter of Engineers Without Borders (EWB)-USA. This program is a unique EWB-USA program that builds on ongoing academic research in the Peruvian Andes at the University of Texas at Austin and regional efforts by The Mountain Institute to mitigate the effects of climate change on Peruvian communities that need technical solutions to water issues. We contrast the benefits and struggles of pursuing a student-led initiative with a regional scope. Specifically, this case study shares how the roles of partnerships between universities, private sector, government, and nongovernmental organizations create challenges and opportunities for a student-led humanitarian engineering program. The key challenges identified are (1) effectual use of U.S. team members, (2) building trust and open communication with in-country partners, and (3) understanding community dynamics and adapting projects to their local context. We present how development of a ‘non-traditional engineering classroom’ framework can serve as a proactive means for facilitating effective knowledge transfer, critical reflection, and service-learning to improve project outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.