Southern Ocean primary productivity plays a key role in global ocean biogeochemistry and climate. At the Southern Ocean sea ice edge in coastal McMurdo Sound, we observed simultaneous cobalamin and iron limitation of surface water phytoplankton communities in late Austral summer. Cobalamin is produced only by bacteria and archaea, suggesting phytoplankton-bacterial interactions must play a role in this limitation. To characterize these interactions and investigate the molecular basis of multiple nutrient limitation, we examined transitions in global gene expression over short time scales, induced by shifts in micronutrient availability. Diatoms, the dominant primary producers, exhibited transcriptional patterns indicative of co-occurring iron and cobalamin deprivation. The major contributor to cobalamin biosynthesis gene expression was a gammaproteobacterial population, Oceanospirillaceae ASP10-02a. This group also contributed significantly to metagenomic cobalamin biosynthesis gene abundance throughout Southern Ocean surface waters. Oceanospirillaceae ASP10-02a displayed elevated expression of organic matter acquisition and cell surface attachment-related genes, consistent with a mutualistic relationship in which they are dependent on phytoplankton growth to fuel cobalamin production. Separate bacterial groups, including Methylophaga, appeared to rely on phytoplankton for carbon and energy sources, but displayed gene expression patterns consistent with iron and cobalamin deprivation. This suggests they also compete with phytoplankton and are important cobalamin consumers. Expression patterns of siderophore-related genes offer evidence for bacterial influences on iron availability as well. The nature and degree of this episodic colimitation appear to be mediated by a series of phytoplankton-bacterial interactions in both positive and negative feedback loops.colimitation | Southern Ocean primary productivity | metatranscriptomics | phytoplankton-bacterial interactions | cobalamin P rimary productivity and community composition in the Southern Ocean play key roles in global change (1, 2). The coastal Southern Ocean, particularly its shelf and marginal ice zones, is highly productive, with mean rates approaching 300-450 mg C m −2 ·d −1 (3). As such, identifying factors controlling phytoplankton growth in these regions is essential for understanding the ocean's role in past, present, and future biogeochemical cycles. Although irradiance, temperature, and iron availability are often considered to be the primary drivers of Southern Ocean productivity (1, 4), cobalamin (vitamin B 12 ) availability has also been shown to play a role (5, 6). Cobalamin is produced only by select bacteria and archaea and is required by most eukaryotic phytoplankton, as well as many bacteria that do not produce the vitamin (7). Cobalamin is used for a range of functions, including methionine biosynthesis and one-carbon metabolism. Importantly, phytoplankton that are able to grow without cobalamin preferentially use it when available; growth...
SignificanceBiological dinitrogen (N2) fixation (BNF) is an important source of nitrogen in marine systems. Until recently, it was believed to be primarily limited to subtropical open oceans. Marine BNF is mainly attributed to cyanobacteria. However, recently an unusual N2-fixing unicellular cyanobacteria (UCYN-A)/haptophyte symbiosis was reported with a broader temperature range than other N2-fixing cyanobacteria. We report that the UCYN-A symbiosis is present and fixing N2 in the Western Arctic and Bering Seas, further north than any previously reported N2-fixing marine cyanobacteria. Nanoscale secondary ion mass spectrometry enabled us to directly show that the symbiosis was fixing N2. These results show that N2-fixing cyanobacteria are not constrained to subtropical waters and challenge commonly held ideas about global marine N2 fixation.
Polynyas, or recurring areas of seasonally open water surrounded by sea ice, are foci for energy and material transfer between the atmosphere and the polar ocean. They are also climate sensitive, with both sea ice extent and glacial melt influencing their productivity. The Amundsen Sea Polynya (ASP) is the greenest polynya in the Southern Ocean, with summertime chlorophyll a concentrations exceeding 20 µg L−1. During the Amundsen Sea Polynya International Research Expedition (ASPIRE) in austral summer 2010–11, we aimed to determine the fate of this high algal productivity. We collected water column profiles for total dissolved inorganic carbon (DIC) and nutrients, particulate and dissolved organic matter, chlorophyll a, mesozooplankton, and microbial biomass to make a carbon budget for this ecosystem. We also measured primary and secondary production, community respiration rates, vertical particle flux and fecal pellet production and grazing. With observations arranged along a gradient of increasing integrated dissolved inorganic nitrogen drawdown (ΔDIN; 0.027–0.74 mol N m−2), changes in DIC in the upper water column (ranging from 0.2 to 4.7 mol C m−2) and gas exchange (0–1.7 mol C m−2) were combined to estimate early season net community production (sNCP; 0.2–5.9 mol C m−2) and then compared to organic matter inventories to estimate export. From a phytoplankton bloom dominated by Phaeocystis antarctica, a high fraction (up to ∼60%) of sNCP was exported to sub-euphotic depths. Microbial respiration remineralized much of this export in the mid waters. Comparisons to short-term (2–3 days) drifting traps and a year-long moored sediment trap capturing the downward flux confirmed that a relatively high fraction (3–6%) of the export from ∼100 m made it through the mid waters to depth. We discuss the climate-sensitive nature of these carbon fluxes, in light of the changing sea ice cover and melting ice sheets in the region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.