Monolayer transition metal dichalcogenides, coupled to metal plasmonic nanocavities, have recently emerged as new platforms for strong light−matter interactions. These systems are expected to have nonlinear-optical properties that will enable them to be used as entangled photon sources, compact wave-mixing devices, and other elements for classical and quantum photonic technologies. Here, we report the first experimental investigation of the nonlinear properties of these strongly coupled systems, by observing second harmonic generation from a WSe 2 monolayer strongly coupled to a single gold nanorod. The pumpfrequency dependence of the second-harmonic signal displays a pronounced splitting that can be explained by a coupled-oscillator model with second-order nonlinearities. Rigorous numerical simulations utilizing a nonperturbative nonlinear hydrodynamic model of conduction electrons support this interpretation and reproduce experimental results. Our study thus lays the groundwork for understanding the nonlinear properties of strongly coupled nanoscale systems.
Strong excitonic coupling in photosynthetic systems is believed to enable efficient light absorption and quantitative charge separation, motivating the development of artificial multi-chromophore arrays with equally strong or even stronger...
Time-resolved optical measurements of vibrating metal nanoparticles have been used extensively to probe the ultrafast mechanical properties of the nanoparticles and of the surrounding liquid, but nearly all investigations so far have been limited to the linear regime. Here, we report the observation of a low-frequency oscillating signal in transient-absorption measurements of nanoparticles with octahedral gold cores and cubic silver shells; the signal appears at the difference of two mechanical vibrational frequencies in the particles, suggesting a nonlinear mixing process. We tentatively attribute this proposed mixing to a nonlinear coupling between a vibrational mode of the nanoparticle and its optical-frequency plasmon resonance. The optimization of this nonlinear transduction may enable high-efficiency opto-mechanical frequency mixing in the GHz−THz frequency regime.
Dyads containing two near-infrared absorbing and emitting bacteriochlorins with distinct spectral properties have been prepared and characterized by absorption, emission, and transient-absorption spectroscopies. The dyads exhibit ultrafast ([Formula: see text]3 ps) energy transfer from the bacteriochlorin with the higher-energy S1 state to the bacteriochlorin emitting at the longer wavelength. The dyads exhibit strong fluorescence and relatively long excited state lifetimes ([Formula: see text]4 ns) in both non-polar and polar solvents, which indicates negligible photoinduced electron transfer between the two bacteriochlorins in the dyads. These dyads are thus attractive for the development of light-harvesting arrays and fluorophores for in vivo bioimaging.
By observing a pronounced splitting in the second harmonic signal, we report the first experimental investigation of the nonlinear properties of a strongly coupled system consisting of a WSe2 monolayer and a single gold nanorod.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.