This proof-of-concept study found that smartwatch photoplethysmography coupled with a deep neural network can passively detect AF but with some loss of sensitivity and specificity against a criterion-standard ECG. Further studies will help identify the optimal role for smartwatch-guided rhythm assessment.
Remote ischemic preconditioning (rIPC) induced by cycles of transient limb ischemia and reperfusion is a powerful cardioprotective strategy with additional pleiotropic effects. However, our understanding of its underlying mediators and mechanisms remains incomplete. We examined the role of miR-144 in the cardioprotection induced by rIPC. Microarray studies first established that rIPC increases, and IR injury decreases miR-144 levels in mouse myocardium, the latter being rescued by both rIPC and intravenous administration of miR-144. Going along with this systemic treatment with miR-144 increased P-Akt, P-GSK3β and P-p44/42 MAPK, decreased p-mTOR level and induced autophagy signaling, and induced early and delayed cardioprotection with improved functional recovery and reduction in infarct size similar to that achieved by rIPC. Conversely, systemic administration of a specific antisense oligonucleotide reduced myocardial levels of miR-144 and abrogated cardioprotection by rIPC. We then showed that rIPC increases plasma miR-144 levels in mice and humans, but there was no change in plasma microparticle (50-400 nM) numbers or their miR-144 content. However, there was an almost fourfold increase in miR-144 precursor in the exosome pellet, and a significant increase in miR-144 levels in exosome-poor serum which, in turn, was associated with increased levels of the miR carriage protein Argonaute-2. Systemic release of microRNA 144 plays a pivotal role in the cardioprotection induced by rIPC. Future studies should assess the potential for plasma miR-144 as a biomarker of the effectiveness of rIPC induced by limb ischemia, and whether miR-144 itself may represent a novel therapy to reduce clinical ischemia-reperfusion injury.
Rationale Neonatal mice have the capacity to regenerate their hearts in response to injury, but this potential is lost after the first week of life. The transcriptional changes that underpin mammalian cardiac regeneration have not been fully characterized at the molecular level. Objective The objectives of our study were to determine if myocytes revert the transcriptional phenotype to a less differentiated state during regeneration and to systematically interrogate the transcriptional data to identify and validate potential regulators of this process. Methods and Results We derived a core transcriptional signature of injury-induced cardiac myocyte regeneration in mouse by comparing global transcriptional programs in a dynamic model of in vitro and in vivo cardiac myocyte differentiation, in vitro cardiac myocyte explant model, as well as a neonatal heart resection model. The regenerating mouse heart revealed a transcriptional reversion of cardiac myocyte differentiation processes including reactivation of latent developmental programs similar to those observed during de-stabilization of a mature cardiac myocyte phenotype in the explant model. We identified potential upstream regulators of the core network, including interleukin 13 (IL13), which induced cardiac myocyte cell cycle entry and STAT6/STAT3 signaling in vitro. We demonstrate that STAT3/periostin and STAT6 signaling are critical mediators of IL13 signaling in cardiac myocytes. These downstream signaling molecules are also modulated in the regenerating mouse heart. Conclusions Our work reveals new insights into the transcriptional regulation of mammalian cardiac regeneration and provides the founding circuitry for identifying potential regulators for stimulating heart regeneration.
We have previously shown that remote ischemic preconditioning by limb ischemia (rIPC) or intra-arterial adenosine releases a dialyzable cardioprotective circulating factor(s), the release of which requires an intact neural connection to the limb and is blocked by pretreatment with S-nitroso-N-acetylpenicillamine (SNAP). Remote cardioprotection can be induced by other forms of peripheral stimulation including topical capsaicin, but the mechanisms of their signal transduction are incompletely understood. Rabbits were anesthetized by intravenous pentobarbital, intubated and ventilated, then randomized (4-7 animals in each group) to receive sham procedure, rIPC (4 cycles of 5 min lower limb ischemia, 5 min reperfusion), direct femoral nerve stimulation, topical capsaicin, pretreatment with intra-arterial SNAP + capsaicin, pretreatment with topical DMSO (a sensory nerve blocker) + topical capsaicin, or pretreatment with intra-arterial SNAP + femoral nerve stimulation, topical DMSO alone, or intra-arterial SNAP alone. Blood was then rapidly drawn from the carotid artery to produce the plasma dialysate which was used to perfuse a naïve heart from an untreated donor rabbit. The infarct size and recovery of LV-developed pressure and end-diastolic pressure were measured after 30 min of global ischemia and 120 min of reperfusion. Compared to sham, dialysate from rIPC, femoral nerve stimulation, and topical capsaicin groups all produced significant cardioprotection with significantly reduced infarct size, and improved the post-ischemic cardiac performance. Cardioprotection was not seen in the topical DMSO-capsaicin, SNAP + capsaicin, and SNAP + FNS groups. These results confirm the central role of peripheral nerves in the local signal transduction of remote cardioprotection. Direct electrical or peripheral neural stimulation evokes the release of cardioprotective substances into the bloodstream, with comparable effects to that of rIPC induced by limb ischemia.
Background--Alcohol consumption has been associated with atrial fibrillation (AF) in several epidemiologic studies, but the underlying mechanisms remain unknown. We sought to test the hypothesis that an atrial myopathy, manifested by echocardiographic left atrial enlargement, explains the association between chronic alcohol use and AF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.