ObjectivesRecent developments in incremental dentine analysis allowing increased temporal resolution for tissues formed during the first 1,000 days of life have cast doubt on the veracity of weaning studies using bone collagen carbon (δ13C) and nitrogen (δ15N) isotope ratio data from infants. Here, we compare published bone data from the well‐preserved Anglo‐Saxon site of Raunds Furnells, England, with co‐forming dentine from the same individuals, and investigate the relationship of these with juvenile stature. The high‐resolution isotope data recorded in dentine allow us to investigate the relationship of diet with juvenile stature during this critical period of life.Materials and methodsWe compare incremental dentine collagen δ13C and δ15N data to published bone collagen data for 18 juveniles and 5 female adults from Anglo Saxon Raunds Furnells alongside new data for juvenile skeletal and dental age. An improvement in the method by sampling the first 0.5 mm of the sub‐cuspal or sub‐incisal dentine allows the isotopic measurement of dentine formed in utero.Results and discussionδ13C profiles for both dentine and bone are similar and more robust than δ15N for estimating the age at which weaning foods are introduced. Our results suggest δ15N values from dentine can be used to evaluate the maternal/in utero diet and physiology during pregnancy, and that infant dentine profiles may reflect diet PLUS an element of physiological stress. In particular, bone collagen fails to record the same range of δ15N as co‐forming dentine, especially where growth is stunted, suggesting that infant bone collagen is unreliable for weaning studies.
Bradford Scholars -how to deposit your paper
Overview
Copyright check• Check if your publisher allows submission to a repository.• Use the Sherpa RoMEO database if you are not sure about your publisher's position or email openaccess@bradford.ac.uk.
The development of farming was a catalyst for the evolution of the human diet from the varied subsistence practices of hunter-gatherers to the more globalised food economy we depend upon today. Although there has been considerable research into the dietary changes associated with the initial spread of farming, less attention has been given to how dietary choices continued to develop during subsequent millennia. A paleogenomic time transect for 5 millennia of human occupation in the Great Hungarian Plain spanning from the advent of the Neolithic to the Iron Age, showed major genomic turnovers. Here we assess where these genetic turnovers are associated with corresponding dietary shifts, by examining the carbon and nitrogen stable isotope ratios of 52 individuals. Results provide evidence that early Neolithic individuals, which were genetically characterised as Mesolithic hunter-gatherers, relied on wild resources to a greater extent than those whose genomic attributes were of typical Neolithic European farmers. Other Neolithic individuals and those from the Copper Age to Bronze Age periods relied mostly on terrestrial C3 plant resources. We also report a carbon isotopic ratio typical of C4 plants, which may indicate millet consumption in the Late Bronze Age, despite suggestions of the crop’s earlier arrival in Europe during the Neolithic.
This article presents the results of a study of infant diet at two Iron Age sites on the island of Öland, Sweden. The cemetery at Bjärby contained a large number of subadults who had survived the earliest years of life, whereas most individuals at Triberga had died by 6 months of age. To investigate whether differences in infant feeding could explain the different mortality rates, the carbon, nitrogen, and sulfur stable isotope ratios of bone and tooth dentin collagen from the two sites were analyzed. Twenty-two samples from Triberga and 102 from Bjärby yielded data that could be included in the carbon and nitrogen analysis. Twelve samples from Triberga and 42 from Bjärby were included in the sulfur analysis. The results for carbon (δ(13) C: Triberga X = -18.8, s.d. = 1.1; Bjärby X = -19.8, s.d. = 0.4), nitrogen (δ(15) N: Triberga X = 12.9, s.d. = 1.5; Bjärby X = 13.4, s.d. = 1.4), and sulfur (δ(34) S: Triberga X = 8.1, s.d. = 1.1; Bjärby X = 5.8, s.d. = 1.3) suggest that diet was broadly similar at both sites and based on terrestrial resources. At Bjärby, females and high-status individuals consumed higher-trophic level protein than other males from early childhood onward. There was some indication that the contribution of marine resources to the diet may also have differed between the sexes at Triberga. No consistent differences in breast milk intake were observed between the two sites, but there was substantial variation at each. This variation may reflect an influence of gender and social status on infant feeding decisions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.