The need exists for a highly accurate, efficient and inexpensive tool to distinguish normal brain tissue from glioblastoma multiforme (GBM) and necrosis boundaries rapidly, in real-time, in the operating room. Raman spectroscopy provides a unique biochemical signature of a tissue type, with the potential to provide intraoperative identification of tumor and necrosis boundaries. We aimed to develop a database of Raman spectra from normal brain, GBM, and necrosis, and a methodology for distinguishing these pathologies. Raman spectroscopy was used to measure 95 regions from 40 frozen tissue sections using 785 nm excitation wavelength. Review of adjacent hematoxylin and eosin sections confirmed histology of each region. Three regions each of normal grey matter, necrosis, and GBM were selected as a training set. Ten regions were selected as a validation set, with a secondary validation set of tissue regions containing freeze artifact. Grey matter contained higher lipid (1061, 1081 cm(-1)) content, whereas necrosis revealed increased protein and nucleic acid content (1003, 1206, 1239, 1255-1266, 1552 cm(-1)). GBM fell between these two extremes. Discriminant function analysis showed 99.6, 97.8, and 77.5% accuracy in distinguishing tissue types in the training, validation, and validation with freeze artifact datasets, respectively. Decreased classification in the freeze artifact group was due to tissue preparation damage. This study shows the potential of Raman spectroscopy to accurately identify normal brain, necrosis, and GBM as a tool to augment pathologic diagnosis. Future work will develop mapped images of diffuse glioma and neoplastic margins toward development of an intraoperative surgical tool.
Raman spectroscopy shows potential in differentiating tumors from normal tissue. We used Raman spectroscopy with near‐infrared light excitation to study normal breast tissue and tumors from 11 mice injected with a cancer cell line. Spectra were collected from 17 tumors, 18 samples of adjacent breast tissue and lymph nodes, and 17 tissue samples from the contralateral breast and its adjacent lymph nodes. Discriminant function analysis was used for classification with principal component analysis scores as input data. Tissues were examined by light microscopy following formalin fixation and hematoxylin and eosin staining. Discriminant function analysis and histology agreed on the diagnosis of all contralateral normal, tumor, and mastitis samples, except one tumor which was found to be more similar to normal tissue. Normal tissue adjacent to each tumor was examined as a separate data group called tumor bed. Scattered morphologically suspicious atypical cells not definite for tumor were present in the tumor bed samples. Classification of tumor bed tissue showed that some tumor bed tissues are diagnostically different from normal, tumor, and mastitis tissue. This may reflect malignant molecular alterations prior to morphologic changes, as expected in preneoplastic processes. Raman spectroscopy not only distinguishes tumor from normal breast tissue, but also detects early neoplastic changes prior to definite morphologic alteration. © 2007 Wiley Periodicals, Inc. Biopolymers 89: 235–241, 2008. This article was originally published online as an accepted preprint. The “Published Online”date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com
There is a need in prostate cancer diagnostics and research for a label-free imaging methodology that is nondestructive, rapid, objective, and uninfluenced by water. Raman spectroscopy provides a molecular signature, which can be scaled from micron-level regions of interest in cells to macroscopic areas of tissue. It can be used for applications ranging from in vivo or in vitro diagnostics to basic science laboratory testing. This work describes the fundamentals of Raman spectroscopy and complementary techniques including surface enhanced Raman scattering, resonance Raman spectroscopy, coherent anti-Stokes Raman spectroscopy, confocal Raman spectroscopy, stimulated Raman scattering, and spatially offset Raman spectroscopy. Clinical applications of Raman spectroscopy to prostate cancer will be discussed, including screening, biopsy, margin assessment, and monitoring of treatment efficacy. Laboratory applications including cell identification, culture monitoring, therapeutics development, and live imaging of cellular processes are discussed. Potential future avenues of research are described, with emphasis on multiplexing Raman spectroscopy with other modalities.
Purpose: Raman spectroscopy can quickly and accurately diagnose tissue in near real-time. This study evaluated the capacity of Raman spectroscopy to diagnose pediatric brain tumors. Experimental Design: Samples of untreated pediatric medulloblastoma (4 samples and 4 patients), glioma (i.e. astrocytoma, oligodendroglioma, ependymoma, ganglioglioma and other gliomas; 27 samples and 19 patients), and normal brain samples (33 samples and 5 patients) were collected fresh from the operating room or from our frozen tumor bank. Samples were divided and tested using routine pathology and Raman spectroscopy. Twelve Raman spectra were collected per sample. Support vector machine analysis was used to classify spectra using the pathology diagnosis as the gold standard. Results: Normal brain (321 spectra), glioma (246 spectra) and medulloblastoma (82 spectra) were identified with 96.9, 96.7 and 93.9% accuracy, respectively, when compared with each other. High-grade ependymomas (41 spectra) were differentiated from low-grade ependymomas (25 spectra) with 100% sensitivity and 96.0% specificity. Normal brain tissue was distinguished from low-grade glioma (118 spectra) with 91.5% sensitivity and 97.8% specificity. For these analyses, the tissue-level classification was determined to be 100% accurate. Conclusion: These results suggest Raman spectroscopy can accurately distinguish pediatric brain neoplasms from normal brain tissue, similar tumor types from each other and high-grade from low-grade tumors.
In neurosurgical applications, a tool capable of distinguishing grey matter, white matter, and areas of tumor and/or necrosis in near-real time could greatly aid in tumor resection decision making. Raman spectroscopy is a non-destructive spectroscopic technique which provides molecular information about the tissue under examination based on the vibrational properties of the constituent molecules. With careful measurement and data processing, a spatial step and repeat acquisition of Raman spectra can be used to create Raman images. Forty frozen brain tissue sections were imaged in their entirety using a 300-µm-square measurement grid, and two or more regions of interest within each tissue were also imaged using a 25 µm-square step size. Molecular correlates for histologic features of interest were identified within the Raman spectra, and novel imaging algorithms were developed to compare molecular features across multiple tissues. In previous work, the relative concentration of individual biomolecules was imaged. Here, the relative concentrations of 1004, 1300:1344, and 1660 cm(-1), which correspond primarily to protein and lipid content, were simultaneously imaged across all tissues. This provided simple interpretation of boundaries between grey matter, white matter, and diseased tissue, and corresponded with findings from adjacent hematoxylin and eosin-stained sections. This novel, yet simple, multi-channel imaging technique allows clinically-relevant resolution with straightforward molecular interpretation of Raman images not possible by imaging any single peak. This method can be applied to either surgical or laboratory tools for rapid, non-destructive imaging of grey and white matter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.