ObjectiveDiets rich in fermentable fibres provide an array of health benefits; however, many patients with IBD report poor tolerance to fermentable fibre-rich foods. Intervention studies with dietary fibres in murine models of colonic inflammation have yielded conflicting results on whether fibres ameliorate or exacerbate IBD. Herein, we examined how replacing the insoluble fibre, cellulose, with the fermentable fibres, inulin or pectin, impacted murine colitis resulting from immune dysregulation via inhibition of interleukin (IL)-10 signalling and/or innate immune deficiency (Tlr5KO).DesignMice were fed with diet containing either cellulose, inulin or pectin and subjected to weekly injections of an IL-10 receptor (αIL-10R) neutralising antibody. Colitis development was examined by serological, biochemical, histological and immunological parameters.ResultsInulin potentiated the severity of αIL10R-induced colitis, while pectin ameliorated the disease. Such exacerbation of colitis following inulin feeding was associated with enrichment of butyrate-producing bacteria and elevated levels of caecal butyrate. Blockade of butyrate production by either metronidazole or hops β-acids ameliorated colitis severity in inulin-fed mice, whereas augmenting caecal butyrate via tributyrin increased colitis severity in cellulose containing diet-fed mice. Elevated butyrate levels were associated with increased IL-1β activity, while inhibition of the NOD-like receptor protein 3 by genetic, pharmacologic or dietary means markedly reduced colitis.ConclusionThese results not only support the notion that fermentable fibres have the potential to ameliorate colitis but also caution that, in some contexts, prebiotic fibres can lead to gut dysbiosis and surfeit colonic butyrate that might exacerbate IBD.
Iron is necessary for the survival of almost all aerobic organisms. In the mammalian host, iron is a required cofactor for the assembly of functional iron-sulfur (Fe-S) cluster proteins, heme-binding proteins and ribonucleotide reductases that regulate various functions, including heme synthesis, oxygen transport and DNA synthesis. However, the bioavailability of iron is low due to its insolubility under aerobic conditions. Moreover, the host coordinates a nutritional immune response to restrict the accessibility of iron against potential pathogens. To counter nutritional immunity, most commensal and pathogenic bacteria synthesize and secrete small iron chelators termed siderophores. Siderophores have potent affinity for iron, which allows them to seize the essential metal from the host iron-binding proteins. To safeguard against iron thievery, the host relies upon the innate immune protein, lipocalin 2 (Lcn2), which could sequester catecholate-type siderophores and thus impede bacterial growth. However, certain bacteria are capable of outmaneuvering the host by either producing “stealth” siderophores or by expressing competitive antagonists that bind Lcn2 in lieu of siderophores. In this review, we summarize the mechanisms underlying the complex iron tug-of-war between host and bacteria with an emphasis on how host innate immunity responds to siderophores.
Commensal gut microbiota are strongly correlated with host hemodynamic homeostasis but only broadly associated with cardiovascular health. This includes a general correspondence of quantitative and qualitative shifts in intestinal microbial communities found in hypertensive rat models and human patients. However, the mechanisms by which gut microbes contribute to the function of organs important for blood pressure (BP) control remain unanswered. To examine the direct effects of microbiota on BP, we conventionalized germ-free (GF) rats with specific pathogen-free rats for a short-term period of 10 days, which served as a model system to observe the dynamic responses when reconstituting the holobiome. The absence of microbiota in GF rats resulted with relative hypotension compared with their conventionalized counterparts, suggesting an obligatory role of microbiota in BP homeostasis. Hypotension observed in GF rats was accompanied by a marked reduction in vascular contractility. Both BP and vascular contractility were restored by the introduction of microbiota to GF rats, indicating that microbiota could impact BP through a vascular-dependent mechanism. This is further supported by the decrease in actin polymerization in arteries from GF rats. Improved vascular contractility in conventionalized GF rats, as indicated through stabilized actin filaments, was associated with an increase in cofilin phosphorylation. These data indicate that the vascular system senses the presence (or lack of) microbiota to maintain vascular tone via actin polymerization. Overall, these results constitute a fundamental discovery of the essential nature of microbiota in BP regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.