Quantum dot nanoscale semiconductor heterostructures (QDHs) are a class of materials potentially useful for integration into solar energy conversion devices. However, realizing the potential of these heterostructured systems requires the ability to identify and synthesize heterostructures with suitably designed materials, controlled size and morphology of each component, and structural control over their shared interface. In this review, we will present the case for the utility and advantages of chemically synthesized QDHs for solar energy conversion, beginning with an overview of various methods of heterostructured material synthesis and a survey of heretofore reported materials systems. The fundamental charge transfer properties of the resulting materials combinations and their basic design principles will be outlined. Finally, we will discuss representative solar photovoltaic and photoelectrochemical devices employing QDHs (including quantum dot sensitized solar cells, or QDSSCs) and examine how QDH synthesis and design impacts their performance.
EuS nanocrystals (NCs) were doped with Gd resulting in an enhancement of their magnetic properties. New EuS and GdS single source precursors (SSPs) were synthesized, characterized, and employed to synthesize Eu1-xGdxS NCs by decomposition in oleylamine and trioctylphosphine at 290 °C. The doped NCs were characterized using X-ray diffraction, transmission electron miscroscopy and scanning transmission electron microscopy, which supports the uniform distribution of Gd dopants through electron energy loss spectroscopy (EELS) mapping. X-ray absorption spectroscopy (XAS) revealed the dopant ions in Eu1-xGdxS NCs to be predominantly Gd3+. NCs with a variety of doping ratios of Gd (0 ≤ x < 1) were systematically studied using vibrating sample magnetometry and the observed magnetic properties were correlated with the Gd doping levels (x) as quantified with ICP-AES. Enhancement of the Curie temperature (TC) was observed for samples with low Gd concentrations (x ≤ 10 %) with a maximum TC of 29.4 K observed for NCs containing 5.3 % Gd. Overall, the observed TC, Weiss temperature (θ), and hysteretic behavior correspond directly to the doping level in Eu1-xGdxS NCs and the trends qualitatively follow those previously reported for bulk and thin film samples.
Development of earth-abundant electrocatalysts for hydrogen evolution and oxidation reactions in strong acids represents a great challenge for developing high efficiency, durable, and cost effective electrolyzers and fuel cells. We report herein that hafnium oxyhydroxide with incorporated nitrogen by treatment using an atmospheric nitrogen plasma demonstrates high catalytic activity and stability for both hydrogen evolution and oxidation reactions in strong acidic media using earth-abundant materials. The observed properties are especially important for unitized regenerative fuel cells using polymer electrolyte membranes. Our results indicate that nitrogen-modified hafnium oxyhydroxide could be a true alternative for platinum as an active and stable electrocatalyst, and furthermore that nitrogen plasma treatment may be useful in activating other non-conductive materials to form new active electrocatalysts.
We demonstrate the use of multiresonant coherent multidimensional spectroscopy (CMDS) for obtaining 2D spectra of the diagonal and cross-peaks of the 1S and 1P excitons and biexcitons in PbSe quantum dots and their coherent and incoherent dynamics. We show that multiresonant CMDS line narrows the inhomogeneous broadening and resolves the excitonic peaks from the background that often obscures peaks. We develop theoretical methods that extract details of the homogeneous and inhomogeneous broadening, the Coulombic coupling within the biexciton, and the relative exciton and biexciton transition moments. The population dynamics are measured by scanning the excitation pulse time delays over all time orderings. Phase modulations of individual coherences are observed because of heterodyning between scattered light and the four-wave mixing signal. The experiments demonstrate that CMDS can be used to obtain quantum state resolved dynamics of the electronic states in complex nanostructures and other important materials.
We report a general method for determining the spin polarization from nanowire materials using Andreev reflection spectroscopy implemented with a Nb superconducting contact and common electron-beam lithography device fabrication techniques. This method was applied to magnetic semiconducting Fe(1-x)Co(x)Si alloy nanowires with x̅ = 0.23, and the average spin polarization extracted from 6 nanowire devices is 28 ± 7% with a highest observed value of 35%. Local-electrode atom probe tomography (APT) confirms the homogeneous distribution of Co atoms in the FeSi host lattice, and X-ray magnetic circular dichroism (XMCD) establishes that the elemental origin of magnetism in this strongly correlated electron system is due to Co atoms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.