Robots must cost less and be force-controlled to enable widespread, safe deployment in unconstrained human environments. We propose Quasi-Direct Drive actuation as a capable paradigm for robotic force-controlled manipulation in human environments at low-cost. Our prototype -Blue -is a human scale 7 Degree of Freedom arm with 2kg payload. Blue can cost less than $5000. We show that Blue has dynamic properties that meet or exceed the needs of human operators: the robot has a nominal position-control bandwidth of 7.5Hz and repeatability within 4mm. We demonstrate a Virtual Reality based interface that can be used as a method for telepresence and collecting robot training demonstrations. Manufacturability, scaling, and potential use-cases for the Blue system are also addressed. Videos and additional information can be found online at berkeleyopenarms.github.io.
Tip-extending soft robots that "grow" via pneumatic eversion of their body material have demonstrated applications in exploration of cluttered environments. During growth, the motion and force of the robot tip can be controlled in three degrees of freedom using actuators that direct the tip in combination with extension. However, when reversal of the growth process is attempted by retracting the internal body material from the base, the robot body often responds by buckling rather than inverting the body material, making control of tip motion and force impossible. We present and validate a model to predict when buckling occurs instead of inversion, and we present an electromechanical device that can be added to a tip-extending soft robot to prevent buckling during retraction, restoring the ability of steering actuators to control the robot's motion and force during inversion. Using our retraction device, we demonstrate three previously impossible tasks: exploring different branches of a forking path, reversing growth while applying minimal force on the environment, and bringing back environment samples to the base.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.