Optical waveguides are becoming increasingly important in the developing area of broadband communications. The field of electronics is advancing rapidly, leading to further demands for larger data storage, smaller components and a better design of integrated optical circuits. The integration of optical interconnects on printed circuit boards (PCBs) requires precise technologies to make this emerging field possible. A promising new microfabrication technique, two-photon photopolymerisation (2PP) can be used to produce three dimensional structures in the sub-micron region. Near-infrared lasers can be used to create 3D optical waveguides by initiating the photopolymerisation of high refractive index monomers in polymeric matrix materials. Terminal silanol groups are intermediates for room temperature vulcaniseable (RTV) silicones and can be cross linked with functional silanes to produce flexible, transparent polymeric materials with high thermal stabilities. A silanol terminated polysiloxane; cross linked with a methyl substituted acryloxy silane has been developed as a suitable material for the fabrication of optical waveguides by two-photon absorption (TPA). A higher refractive index is achieved upon polymerisation of the acrylate functional groups. The material has been shown to be suitable in the fabrication of 3D optical waveguides with a high refractive index contrast. The cured material is fully flexible and exhibits high thermal stability and optical transparency. The material was characterised by Fourier transform infrared spectroscopy (FT-IR), simultaneous thermal analysis coupled with mass spectrometry (STA-MS) and near-infrared spectroscopy (NIRS). Waveguides were observed by phase contrast microscopy, cut back measurements and were additionally directly integrated onto specially designed PCBs by correctly positioning waveguide bundles between optoelectronic components using TPA.
Research into the integration of optical interconnects in printed circuit boards (PCBs) is rapidly gaining interest due to the increase in data transfer speeds now required along with the need for miniaturized devices with increased complexity and functionality. We present a method that involves embedding optoelectronic components in a polymeric material and fabricating optical waveguides in one step. A silanol-terminated polysiloxane cross-linked with an acryloxy functional silane is utilized as a matrix material into which the 3D optical waveguides are inscribed by two-photon-induced polymerization. A pulsed femtosecond laser is used to directly write optical waveguides into the material, forming an optical link between lasers and photodiodes that are directly mounted on a specially designed PCB. The boards produced were characterized by monitoring the transmitted photocurrent as well as temperature-dependent data transmission properties. Data rates exceeding 4 Gbit/s were achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.