Extracytoplasmic function (ECF) sigma factors are known to play an important role in the bacterial response to various environmental stresses and can significantly modulate their pathogenic potential. In the genome of Porphyromonas gingivalis W83, six putative ECF sigma factors were identified. To further evaluate their role in this organism, a PCR-based linear transformation method was used to inactivate five ECF sigma factor genes (PG0162, PG0214, PG0985, PG1660, and PG1827) by allelic exchange mutagenesis. All five isogenic mutants formed black-pigmented colonies on blood agar. Mutants defective in PG0985, PG1660 and PG1827 genes were more sensitive to 0.25 mM of hydrogen peroxide compared to the wild-type strain. Isogenic mutants of PG0162 and PG1660 showed a 50 percent decrease in gingipain activity. RT-PCR analysis showed that there was no alteration in the expression of rgpA, rgpB, and kgp gingipain genes in these mutants. Hemolytic and hemagglutination activities were decreased by more than 50 percent in the PG0162 mutant compared to the wild-type. Taken together, these findings suggest that ECF sigma factors can modulate important virulence factors in P. gingivalis. ECF sigma factors encoded by the PG0162 and PG1660 genes might also be involved in the post-transcriptional regulation of the gingipains.
Porphyromonas gingivalis, a black-pigmented, Gram-negative anaerobe, is an important etiologic agent of periodontal disease. The harsh inflammatory condition of the periodontal pocket implies that this organism has properties that will facilitate its ability to respond and adapt to oxidative stress. Because the stress response in the pathogen is a major determinant of its virulence, a comprehensive understanding of its oxidative stress resistance strategy is vital. We discuss multiple mechanisms and systems that clearly work in synergy to defend and protect P. gingivalis against oxidative damage caused by reactive oxygen species. The involvement of multiple hypothetical proteins and/or proteins of unknown function in this process may imply other unique mechanisms and potential therapeutic targets.
Porphyromonas gingivalis, a major periodontal pathogen, must acquire nutrients from host derived substrates, overcome oxidative stress and subvert the immune system. These activities can be coordinated via the gingipains which represent the most significant virulence factor produced by this organism. In the context of our contribution to this field, we will review the current understanding of gingipain biogenesis, glycosylation, and regulation, as well as discuss their role in oxidative stress resistance and apoptosis. We can postulate a model, in which gingipains may be part of the mechanism for P. gingivalis virulence. KeywordsPorphyromonas gingivalis; gingipains; apoptosis; caspase-independent apoptosis; oxidative stress; VimA; anoikis; N-cadherin; VE-cadherin; integrin β1; VimA; VimE; VimF; DNA repair; glycosylation; virulence; host cell survival; HRgpA; RgpB; Kgp; Review INTRODUCTIONP. gingivalis, a black-pigmented, Gram-negative anaerobe, is an important etiological agent of periodontal disease and is also linked to cardiovascular disease and other systemic diseases [reviewed in (43,103)]. The inflammatory nature of periodontal disease implies that innate host defense mechanisms play a vital role in limiting bacterial growth. During active infection including tissue invasion, toxic reactive oxygen metabolites (e.g. superoxides, hydrogen peroxide and hydroxyl radicals) are mostly generated by polymorphonuclear leukocytes and macrophages (27,29). In order to survive in the inflammatory environment of the periodontal pocket, the bacterium must not only obtain nutrients for growth, but also overcome oxidative stress and subvert the immune defense system. Coordinated regulation of these activities would be beneficial to the bacterium. While there is documented evidence of the response of P. gingivalis to environmental stimulus (56,117,126), one possible mechanism for coordination may occur via the gingipains produced by this bacterium. The presence of P. gingivalis in the periodontal pocket and the high levels of gingipain activity detected in gingival crevicular fluid could implicate a role for gingipains in the destruction of the highly vascular periodontal tissue. Protease-associated degradation of cell-cell adhesion proteins on epithelial and endothelial cells resulting in cell death will compromise tissue integrity and facilitate spreading of the bacterium. Furthermore, degradation of the immune response components will facilitate the survival of the organism. Together, these activities may also satisfy the nutritional requirements of the organism. Gingipain-dependent heme accumulation on the bacterium cell surface may also act as an "oxidative sink", thus, leading to protection against oxidative stress (191,193). We will discuss the role of the gingipains in the survival/pathogenicity of P. gingivalis and the unique vim (virulence modulating) locus that is involved in regulation of the gingipains. We will highlight some of our observations that are consistent with the hypothesis that the gingipain...
A consequence of oxidative stress is DNA damage. The survival of Porphyromonas gingivalis in the inflammatory microenvironment of the periodontal pocket requires an ability to overcome oxidative stress caused by reactive oxygen species (ROS). 8-Oxo-7,8-dihydroguanine (8-oxoG) is typical of oxidative damage induced by ROS. There is no information on the presence of 8-oxoG in P. gingivalis under oxidative stress conditions or on a putative mechanism for its repair. High-pressure liquid chromatography with electrochemical detection analysis of chromosomal DNA revealed higher levels of 8-oxoG in P. gingivalis FLL92, a nonpigmented isogenic mutant, than in the wild-type strain. 8-OxoG repair activity was also increased in cell extracts from P. gingivalis FLL92 compared to those from the parent strain. Enzymatic removal of 8-oxoG was catalyzed by a nucleotide excision repair (NER)-like mechanism rather than the base excision repair (BER) observed in Escherichia coli. In addition, in comparison with other anaerobic periodontal pathogens, the removal of 8-oxoG was unique to P. gingivalis. Taken together, the increased 8-oxoG levels in P. gingivalis FLL92 could further support a role for the hemin layer as a unique mechanism in oxidative stress resistance in this organism. In addition, this is the first observation of an NER-like mechanism as the major mechanism for removal of 8-oxoG in P. gingivalis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.