The mechanisms governing telomere replication in humans are still poorly understood. To fill this gap, we investigated the timing of replication of single telomeres in human cells. Using in situ hybridization techniques, we have found that specific telomeres have preferential time windows for replication during the S-phase and that these intervals do not depend upon telomere length and are largely conserved between homologous chromosomes and between individuals, even in the presence of large subtelomeric segmental polymorphisms. Importantly, we show that one copy of the 3.3 kb macrosatellite repeat D4Z4, present in the subtelomeric region of the late replicating 4q35 telomere, is sufficient to confer both a more peripheral localization and a later-replicating property to a de novo formed telomere. Also, the presence of β-satellite repeats next to a newly created telomere is sufficient to delay its replication timing. Remarkably, several native, non-D4Z4–associated, late-replicating telomeres show a preferential localization toward the nuclear periphery, while several early-replicating telomeres are associated with the inner nuclear volume. We propose that, in humans, chromosome arm–specific subtelomeric sequences may influence both the spatial distribution of telomeres in the nucleus and their replication timing.
Mutations in p53, although frequent in human cancers, have not been implicated in telomere-related syndromes. Here, we show that homozygous mutant mice expressing p53Δ31, a p53 lacking the C-terminal domain, exhibit increased p53 activity and suffer from aplastic anemia and pulmonary fibrosis, hallmarks of syndromes caused by short telomeres. Indeed, p53Δ31/Δ31 mice had short telomeres and other phenotypic traits associated with the telomere disease dyskeratosis congenita and its severe variant the Hoyeraal-Hreidarsson syndrome. Heterozygous p53+/Δ31 mice were only mildly affected, but decreased levels of Mdm4, a negative regulator of p53, led to a dramatic aggravation of their symptoms. Importantly, several genes involved in telomere metabolism were downregulated in p53Δ31/Δ31 cells, including Dyskerin, Rtel1, and Tinf2, which are mutated in dyskeratosis congenita, and Terf1, which is implicated in aplastic anemia. Together, these data reveal that a truncating mutation can activate p53 and that p53 plays a major role in the regulation of telomere metabolism.
Mdm4, a protein related to the ubiquitin-ligase Mdm2, is an essential inhibitor of tumor suppressor protein p53. In both human and mouse cells, the Mdm4 gene encodes two major transcripts: one encodes the full-length oncoprotein (designated below as Mdm4-FL), whereas the other, resulting from a variant splicing that skips exon 6, encodes the shorter isoform Mdm4-S. Importantly, increased Mdm4-S mRNA levels were observed in several human cancers, and correlated with poor survival. However, the role of Mdm4-S in cancer progression remains controversial, because the Mdm4-S protein appeared to be a potent p53 inhibitor when overexpressed, but the splice variant also leads to a decrease in Mdm4-FL expression. To unambiguously determine the physiological impact of the Mdm4-S splice variant, we generated a mouse model with a targeted deletion of the Mdm4 exon 6, thereby creating an obligatory exon skipping. The mutant allele (Mdm4(ΔE6)) prevented the expression of Mdm4-FL, but also led to increased Mdm4-S mRNA levels. Mice homozygous for this allele died during embryonic development, but were rescued by a concomitant p53 deficiency. Furthermore in a hypomorphic p53(ΔP/ΔP) context, the Mdm4(ΔE6) allele led to p53 activation and delayed the growth of oncogene-induced tumors. We next determined the effect of Mdm4(+/ΔE6) heterozygosity in a hypermorphic p53(+/Δ31) genetic background, recently shown to be extremely sensitive to Mdm4 activity. Mdm4(+/ΔE6) p53(+/Δ31) pups were born, but suffered from aplastic anemia and died before weaning, again indicating an increased p53 activity. Our results demonstrate that the main effect of a skipping of Mdm4 exon 6 is not the synthesis of the Mdm4-S protein, but rather a decrease in Mdm4-FL expression. These and other data suggest that increased Mdm4-S mRNA levels might correlate with more aggressive cancers without encoding significant amounts of a potential oncoprotein. Hypotheses that may account for this apparent paradox are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.