An infant's risk of developing neuromotor impairment is primarily assessed through visual examination by specialized clinicians. Therefore, many infants at risk for impairment go undetected, particularly in under-resourced environments. There is thus a need to develop automated, clinical assessments based on quantitative measures from widely-available sources, such as videos recorded on a mobile device. Here, we automatically extract body poses and movement kinematics from the videos of at-risk infants (N=19). For each infant, we calculate how much they deviate from a group of healthy infants (N=85 online videos) using a Naïve Gaussian Bayesian Surprise metric. After pre-registering our Bayesian Surprise calculations, we find that infants who are at high risk for impairments deviate considerably from the healthy group. Our simple method, provided as an open-source toolkit, thus shows promise as the basis for an automated and low-cost assessment of risk based on video recordings.
An infant's risk of developing neuromotor impairment is primarily assessed through visual examination by specialized clinicians. Therefore, many infants at risk for impairment go undetected, particularly in under-resourced environments. There is thus a need to develop automated, clinical assessments based on quantitative measures from widely-available sources, such as video cameras. Here, we automatically extract body poses and movement kinematics from the videos of at-risk infants (N=19). For each infant, we calculate how much they deviate from a group of healthy infants (N=85 online videos) using Naïve Gaussian Bayesian Surprise. After pre-registering our Bayesian Surprise calculations, we find that infants that are at higher risk for impairments deviate considerably from the healthy group. Our simple method, provided as an open source toolkit, thus shows promise as the basis for an automated and low-cost assessment of risk based on video recordings.
An important challenge in segmenting real-world biomedical imaging data is the presence of multiple disease processes within individual subjects. Most adults above age 60 exhibit a variable degree of small vessel ischemic disease, as well as chronic infarcts, which will manifest as white matter hyperintensities (WMH) on brain MRIs. Subjects diagnosed with gliomas will also typically exhibit some degree of abnormal T2 signal due to WMH, rather than just due to tumor. We sought to develop a fully automated algorithm to distinguish and quantify these distinct disease processes within individual subjects' brain MRIs. To address this multi-disease problem, we trained a 3D U-Net to distinguish between abnormal signal arising from tumors vs. WMH in the 3D multi-parametric MRI (mpMRI, i.e., native T1-weighted, T1-post-contrast, T2, T2-FLAIR) scans of the International Brain Tumor Segmentation (BraTS) 2018 dataset (n training = 285, n validation = 66). Our trained neuroradiologist manually annotated WMH on the BraTS training subjects, finding that 69% of subjects had WMH. Our 3D U-Net model had a 4-channel 3D input patch (80 × 80 × 80) from mpMRI, four encoding and decoding layers, and an output of either four [background, active tumor (AT), necrotic core (NCR), peritumoral edematous/infiltrated tissue (ED)] or five classes (adding WMH as the fifth class). For both the four-and five-class output models, the median Dice for whole tumor (WT) extent (i.e., union of AT, ED, NCR) was 0.92 in both training and validation sets. Notably, the five-class model achieved significantly (p = 0.002) lower/better Hausdorff distances for WT extent in the training subjects. There was strong positive correlation between manually segmented and predicted volumes for WT (r = 0.96) and WMH (r = 0.89). Larger lesion volumes were positively correlated with higher/better Dice scores for WT (r = 0.33), WMH (r = 0.34), and across all lesions (r = 0.89) on a log(10) transformed scale. While the median Dice for WMH was 0.42 across training subjects with WMH, the median Dice was 0.62 for those with
Highlights
A U-Net incorporating spatial prior information can successfully segment 6 brain tissue types.
The U-Net was able to segment gray and white matter in the presence of lesions.
The U-Net surpassed the performance of its source algorithm in an external dataset.
Segmentations were produced in a hundredth of the time of its predecessor algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.