Direct numerical simulation and stereoscopic particle image velocimetry of turbulent convection are used to gather spatial data for the calculation of structure functions. We wish to add to the ongoing discussion in the literature whether temperature acts as an active or passive scalar in turbulent convection, with consequences for structure-function scaling. The simulation results show direct confirmation of the scalings derived by Bolgiano and Obukhov for turbulence with an active scalar for both velocity and temperature statistics. The active-scalar range shifts to larger scales when the forcing parameter ͑Rayleigh number͒ is increased. Furthermore, a close inspection of local turbulent length scales ͑Kolmogorov and Bolgiano lengths͒ confirms conjectures from earlier studies that the oft-used global averages are not suited for the interpretation of structure functions. In the experiment, a characterization of the domain-filling large-scale circulation of confined convection is carried out for comparison with other studies. The measured velocity fields are also used to calculate velocity structure functions, further confirming the Bolgiano-Obukhov scalings when interpreted with the local turbulent length scales found in the simulations. An extended self-similarity analysis shows that the relative scalings are different for the Kolmogorov and Bolgiano-Obukhov regimes.
. (2008). The three-dimensional structure of an electromagnetically generated dipolar vortex in a shallow fluid layer. Physics of Fluids, 20(11), 116601-1/15. [116601]. DOI: 10.1063/1.3005452 General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.• You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. The three-dimensional structure of an electromagnetically generated dipolar vortex in a shallow fluid layer Many experiments have been performed in electromagnetically driven shallow fluid layers to study quasi-two-dimensional ͑Q2D͒ turbulence, the shallowness of the layer commonly is assumed to ensure Q2D dynamics. In this paper, however, we demonstrate that shallow fluid flows exhibit complex three-dimensional ͑3D͒ structures. For this purpose we study one of the elementary vortex structures in Q2D turbulence, the dipolar vortex, in a shallow fluid layer. The flow evolution is studied both experimentally and by numerical simulations. Experimentally, stereoscopic particle image velocimetry is used to measure instantaneously all three components of the velocity field in a horizontal plane, and 3D numerical simulations provide the full 3D velocity and vorticity fields over the entire flow domain. It is found that significant and complex 3D structures and vertical motions occur throughout the flow evolution, i.e., during and after the forcing phase. We conclude that the bottom friction is not the main mechanism leading to three-dimensionality of the flow but rather the impermeability of the boundaries. It is further shown that free-surface deformations, i.e., gravity waves, are of minor importance too as a mechanism to generate 3D motion. Furthermore, it is demonstrated that the observations are not due to three-dimensionality introduced by the forcing mechanism but intrinsically due to the flow dynamics itself. The flow evolution is analyzed with respect to its quasi-two-dimensionality by adopting the ratio of "horizontal" to "vertical" kinetic energies, the normalized horizontal divergence, and a measure of the relaxation to a Poiseuille-like profile. An important observation is that, although the relative magnitude of the vertical velocity as compared to the horizontal flow components decreases for decreasing fluid depth, the vertical profile of the horizontal flow relaxes rather slowly to a Poiseuille-like profile, i.e., not faster than the b...
The canonical laboratory set-up to study two-dimensional turbulence is the electromagnetically driven shallow one-or two-layer fluid. Stereo-Particle-Image-Velocimetry measurements in such driven shallow flows revealed strong deviations from quasi-two-dimensionality, which are attributed to the inhomogeneity of the magnetic field and, in contrast to what has been believed so far, the impermeability condition at the bottom and top boundaries. These conjectures have been confirmed by numerical simulations of shallow flows without surface deformation, both in one-and two-layer fluids. The flow simulations reveal that the observed three-dimensional structures are in fact intrinsic to flows in shallow fluids because they do not result primarily from shear at a no-slip boundary: they are a direct consequence of the vertical confinement of the flow.
Recent experiments on a freely evolving dipolar vortex in a homogeneous shallow fluid layer have clearly shown the existence and evolution of complex three-dimensional ͑3D͒ flow structures. The present contribution focuses on the 3D structures of a dipolar vortex evolving in a stable shallow two-layer fluid. Experimentally, Stereoscopic Particle Image Velocimetry is used to measure instantaneously all three components of the velocity field in a horizontal plane and 3D numerical simulations provide the full 3D velocity and vorticity fields over the entire flow domain. Remarkably, the experimental results, supported by the numerical simulations, show to a large extent the same 3D structures and evolution as in the single-layer case. The numerical simulations indicate that the so-called frontal circulation in the two-layer fluid is due to deformations of the internal interface. The 3D flow structures will also affect the distribution of massless passive particles released at the free surface. With numerical studies it is shown that these passive particles tend to accumulate or deplete locally where the horizontal velocity field is not divergence-free. This is in contrast with pure two-dimensional incompressible flows where the divergence of the velocity field is zero by definition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.