Nanomaterials are promising in the development of innovative therapeutic options that include tissue and organ replacement, as well as bone repair and regeneration. The expansion of new nanoscaled biomaterials is based on progress in the field of nanotechnologies, material sciences, and biomedicine. In recent decades, nanomaterial systems have bridged the line between the synthetic and natural worlds, leading to the emergence of a new science called nanomaterial design for biological applications. Nanomaterials replicating bone properties and providing unique functions help in bone tissue engineering. This review article is focused on nanomaterials utilized in or being explored for the purpose of bone repair and regeneration. After a brief overview of bone biology, including a description of bone cells, matrix, and development, nanostructured materials and different types of nanoparticles are discussed in detail.
Abstract. Attributing to their pathophysiological role and stability in biological samples, microRNAs (miRNAs) have the potential to become valuable predictive markers for non-small cell lung cancer (NSCLC). Samples of biopsy tissue constitute suitable material for miRNA profiling with the aim of predicting the effect of palliative chemotherapy. The present study group included 81 patients (74 males, 7 females, all smokers or former smokers) with the squamous cell carcinoma (SCC) histological subtype of NSCLC at a late stage (3B or 4). All patients received palliative chemotherapy based on platinum derivatives in combination with paclitaxel or gemcitabine. The expression of 17 selected miRNAs was measured by reverse transcription-quantitative polymerase chain reaction in tumor tissue macrodissected from formalin-fixed paraffin-embedded (FFPE) tissue samples. To predict the effect of palliative chemotherapy, the association between gene expression levels and overall survival (OS) time was analyzed. From the 17 miRNAs of interest, low expression levels of miR-342 and high expression levels of miR-34a and miR-224 were associated with a reduced OS time in subgroups of patients based on smoking status and treatment modality. Using cluster analysis, associations between combinations of miR-34a, -224 and -342 expression levels with patient survival were identified. The present study revealed that patients with the simultaneous high expression of miR-224 and -342 had a similar prognostic outcome to those with the low expression of miR-224 and -342, which was significantly reduced, compared with patients exhibiting high expression of either miR-224 or miR-342 with low expression of the other. We hypothesize that the effect of a particular miRNA is dependent on the expression level of other members of the miRNA network. This finding appears to complicate survival analyses based on individual miRNAs as markers. In conclusion, the present study provides evidence that specific miRNAs were associated with OS time, which may be candidate predictors for the effectiveness of palliative treatment in SCC lung cancer patients. This objective can be better achieved by combining more markers together than by using individual miRNAs.
The anti-Müllerian hormone (AMH) is a glycoprotein that plays an important role in prenatal sex differentiation. It is used as a biomarker in polycystic ovary syndrome (PCOS) diagnostics, as well as for estimating an individual’s ovarian reserve and the ovarian response to hormonal stimulation during in vitro fertilization (IVF). The aim of this study was to test the stability of AMH during various preanalytical conditions that are in accordance with the ISBER (International Society for Biological and Environmental Repositories) protocol. Plasma and serum samples were taken from each of the 26 participants. The samples were then processed according to the ISBER protocol. AMH levels were measured in all the samples simultaneously using the chemiluminescent kit ACCESS AMH in a UniCel® DxI 800 Immunoassay System (Beckman Coulter, Brea, CA, USA). The study proved that AMH retains a relatively high degree of stability during repeated freezing and thawing in serum. AMH was shown to be less stable in plasma samples. Room temperature proved to be the least suitable condition for the storage of samples before performing the biomarker analysis. During the testing of storage stability at 5–7 °C, the values decreased over time for all the plasma samples but remained stable in the serum samples. We proved that AMH is highly stable under various stress conditions. The anti-Müllerian hormone retained the greatest stability in the serum samples.
Our results demonstrated the relationship of high tumor tissue TS levels to adverse prognosis in patients undergoing adjuvant chemotherapy. TS is a non-specific tumor marker with respect to NSCLC, therefore we think that its best use would be as a member of the panel of predictors of adjuvant treatment efficacy.
Purpose: Hormonal receptor (HR) status is one of the key factors when determining the treatment of breast cancer. Even though HR conversion is one of the most researched topics recently, most of the previous studies include only the results of biopsies instead of samples obtained by metastasectomy. Aim: The aim of this study is to compare the occurrence of HR status conversion in brain breast cancer metastatic tissue to other localities. Methods: A total of 50 patients after breast cancer metastasectomy of brain, lung or liver were included in the study. The clinical characteristics were recorded. Results: HR conversion was observed in a total of 30 cases (60.0%), while HER2 (human epidermal growth factor receptor 2) discrepancy occurred only in one case (2.0%). Endocrine therapy significantly contributed to the decrease progesterone and estrogen receptor expression in metastatic tissue compared to the primary tumor (p = 0.009, p = 0.023; respectively). Triple negativity was more common in the brain metastases (p = 0.039). Liver metastases occurred in significantly younger patients (p = 0.034), however brain metastases had the poorest OS (p = 0.007). Conclusion: HR conversion occurs in more than 50% of cases of breast cancer metastatic disease, while HER2 discrepancy is rare. Hormonal therapy significantly contributes to the decrease of HR positivity in metastases. Triple negativity is more common in the brain metastases than in other localities. Brain metastases of breast cancer are associated with the poorest prognosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.