Alternative exon splicing and reversible protein phosphorylation of large conductance calcium-activated potassium (BK) channels represent fundamental control mechanisms for the regulation of cellular excitability. BK channels are encoded by a single gene that undergoes extensive, hormonally regulated exon splicing. In native tissues BK channels display considerable diversity and plasticity in their regulation by cAMP-dependent protein kinase (PKA). Differential regulation of alternatively spliced BK channels by PKA may provide a molecular basis for the diversity and plasticity of BK channel sensitivities to PKA. Here we demonstrate that PKA activates BK channels lacking splice inserts (ZERO) but inhibits channels expressing a 59-amino acid exon at splice site 2 (STREX-1). Channel activation is dependent upon a conserved C-terminal PKA consensus motif (S869), whereas inhibition is mediated via a STREX-1 exon-specific PKA consensus site. Thus, alternative splicing acts as a molecular switch to determine the sensitivity of potassium channels to protein phosphorylation.Large conductance calcium-and voltage-activated potassium (BK) 1 channels link intracellular chemical signaling events with the electrical properties of excitable cells in the endocrine, nervous, and vascular systems (1-3). BK channels are further potently modulated by reversible protein phosphorylation (4 -7). In native tissues BK channels display considerable diversity and plasticity in their regulation by reversible protein phosphorylation. For example, cAMP-dependent protein kinase (PKA) phosphorylation activates BK channels in smooth muscle cells and many neurones but inhibits channel activity in endocrine cells of the anterior pituitary (5, 7-11). Furthermore, the direction of channel regulation by PKA can be modified during challenges to homeostasis (9 -11).The pore-forming ␣-subunits of BK channels are derived from a single gene (Slo) that undergoes extensive alternative splicing to produce channels with distinct phenotypes (12-15). Importantly, alternative splicing of the ␣-subunit is dynamically regulated in adults, for example during stress or pregnancy (15, 16). Thus the diversity and plasticity of responses to PKA-dependent protein phosphorylation observed between BK channels in native tissues may result either from differential modulation of alternatively spliced BK channel ␣-subunits (12-15) or through their interaction with different signaling complexes and -subunits (17-19).To address whether BK channel alternative splice variants are differentially regulated by PKA-mediated protein phosphorylation, we have examined the regulation of three mouse (mslo) BK channel variants (20 -22) expressed in HEK293 cells. BK channels are regulated by multiple protein kinase signaling pathways (5,19,23,24). We have thus assayed the functional regulation of BK channel splice variants by directly activating PKA that remains closely associated with the channels in excised inside-out patches. EXPERIMENTAL PROCEDURESMolecular and Cell Biology-cDNAs encod...
The thiazolidinediones (TZDs) are used in the treatment of diabetes mellitus type 2. Their canonical effects are mediated by activation of the peroxisome proliferator–activated receptor γ (PPARγ) transcription factor. In addition to effects mediated by gene activation, the TZDs cause acute, transcription-independent changes in various membrane transport processes, including glucose transport, and they alter the function of a diverse group of membrane proteins, including ion channels. The basis for these off-target effects is unknown, but the TZDs are hydrophobic/amphiphilic and adsorb to the bilayer–water interface, which will alter bilayer properties, meaning that the TZDs may alter membrane protein function by bilayer-mediated mechanisms. We therefore explored whether the TZDs alter lipid bilayer properties sufficiently to be sensed by bilayer-spanning proteins, using gramicidin A (gA) channels as probes. The TZDs altered bilayer elastic properties with potencies that did not correlate with their affinity for PPARγ. At concentrations where they altered gA channel function, they also altered the function of voltage-dependent sodium channels, producing a prepulse-dependent current inhibition and hyperpolarizing shift in the steady-state inactivation curve. The shifts in the inactivation curve produced by the TZDs and other amphiphiles can be superimposed by plotting them as a function of the changes in gA channel lifetimes. The TZDs’ partition coefficients into lipid bilayers were measured using isothermal titration calorimetry. The most potent bilayer modifier, troglitazone, alters bilayer properties at clinically relevant free concentrations; the least potent bilayer modifiers, pioglitazone and rosiglitazone, do not. Unlike other TZDs tested, ciglitazone behaves like a hydrophobic anion and alters the gA monomer–dimer equilibrium by more than one mechanism. Our results provide a possible mechanism for some off-target effects of an important group of drugs, and underscore the importance of exploring bilayer effects of candidate drugs early in drug development.
Phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2 or PIP2] is a direct modulator of a diverse array of proteins in eukaryotic cells. The functional integrity of transmembrane proteins, such as ion channels and transporters, is critically dependent on specific interactions with PIP2 and other phosphoinositides. Here, we report a novel requirement for PIP2 in the activation of the epidermal growth factor receptor (EGFR). Down-regulation of PIP2 levels either via pharmacological inhibition of PI kinase activity, or via manipulation of the levels of the lipid kinase PIP5K1α and the lipid phosphatase synaptojanin, reduced EGFR tyrosine phosphorylation, whereas up-regulation of PIP2 levels via overexpression of PIP5K1α had the opposite effect. A cluster of positively charged residues in the juxtamembrane domain (basic JD) of EGFR is likely to mediate binding of EGFR to PIP2 and PIP2-dependent regulation of EGFR activation. A peptide mimicking the EGFR juxtamembrane domain that was assayed by surface plasmon resonance displayed strong binding to PIP2. Neutralization of positively charged amino acids abolished EGFR/PIP2 interaction in the context of this peptide and down-regulated epidermal growth factor (EGF)-induced EGFR autophosphorylation and EGF-induced EGFR signaling to ion channels in the context of the full-length receptor. These results suggest that EGFR activation and downstream signaling depend on interactions of EGFR with PIP2 and point to the basic JD’s critical involvement in these interactions. The addition of this very different class of membrane proteins to ion channels and transporters suggests that PIP2 may serve as a general modulator of the activity of many diverse eukaryotic transmembrane proteins through their basic JDs.
Cannabidiol (CBD) is the primary nonpsychotropic phytocannabinoid found in Cannabis sativa, which has been proposed to be therapeutic against many conditions, including muscle spasms. Among its putative targets are voltage-gated sodium channels (Navs), which have been implicated in many conditions. We investigated the effects of CBD on Nav1.4, the skeletal muscle Nav subtype. We explored direct effects, involving physical block of the Nav pore, as well as indirect effects, involving modulation of membrane elasticity that contributes to Nav inhibition. MD simulations revealed CBD’s localization inside the membrane and effects on bilayer properties. Nuclear magnetic resonance (NMR) confirmed these results, showing CBD localizing below membrane headgroups. To determine the functional implications of these findings, we used a gramicidin-based fluorescence assay to show that CBD alters membrane elasticity or thickness, which could alter Nav function through bilayer-mediated regulation. Site-directed mutagenesis in the vicinity of the Nav1.4 pore revealed that removing the local anesthetic binding site with F1586A reduces the block of INa by CBD. Altering the fenestrations in the bilayer-spanning domain with Nav1.4-WWWW blocked CBD access from the membrane into the Nav1.4 pore (as judged by MD). The stabilization of inactivation, however, persisted in WWWW, which we ascribe to CBD-induced changes in membrane elasticity. To investigate the potential therapeutic value of CBD against Nav1.4 channelopathies, we used a pathogenic Nav1.4 variant, P1158S, which causes myotonia and periodic paralysis. CBD reduces excitability in both wild-type and the P1158S variant. Our in vitro and in silico results suggest that CBD may have therapeutic value against Nav1.4 hyperexcitability.
Summary The endoplasmic reticulum (ER) forms a branched, dynamic membrane tubule network that is vital for cellular function. Branching arises from membrane fusion facilitated by the GTPase atlastin (ATL). Many metazoan genomes encode for three ATL isoforms that appear to fulfill partially redundant function despite differences in their intrinsic GTPase activity and localization within the ER; however, the underlying mechanistic differences between the isoforms are poorly understood. Here, we identify discrete temporal steps in the catalytic cycle for the two most dissimilar isoforms, ATL1 and ATL3, revealing an overall conserved progression of molecular events from nucleotide binding and hydrolysis, to ATL dimerization and phosphate release. A crystal structure of ATL3 suggests a mechanism for the displacement of the catalytic Mg2+ ion following GTP hydrolysis. Together, the data extend the mechanistic framework for how GTP hydrolysis drives conformational changes in ATL and how the cycle is reset for subsequent rounds of catalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.