Slags from the Pb/Ag medieval (14th century) smelting plant located at Bohutín, Příbram district, Czech Republic, were studied from the mineralogical and geochemical points of view. Two types of slags were distinguished: (i) quenched slags formed mainly by Pb‐rich glass and unmelted residual grains of SiO2 and feldspars, and (ii) crystallized slags mainly composed of Fe‐rich olivine (fayalite) and glass. The mean log viscosity value of the slags calculated for 1200°C was 2.119 Pa s. The morphology of olivine crystals was used to estimate the cooling rates of the melt, for some slags indicating rates > 1450°C/h. The projection of the bulk composition of slags onto the SiO2–PbO–FeO ternary system was used for rough temperature estimates of slag formation, lying probably between 800 and 1200°C.
The present work is focused on the study of strontium transport through crushed granite in the presence of bentonite colloids under dynamic arrangement. The aim of the experiments was to investigate the effect of bentonite colloids on strontium migration in crushed granite. The tracer behaviour was studied in a column set-up under aerobic conditions with a continuous inlet of the liquid phase of a constant tracer concentration (activity) and flow rate. Defined volumes of liquid phase were sampled at periodic time intervals at the column outlet for the measurements of tracer concentrations (activity). The transport was described by breakthrough curves. The stepwise approach included these steps: (1) an evaluation of the hydrodynamic column properties by the non-sorbing tracer 3 H; (2) a column experiment with bentonite colloids in deionized water was performed; (3) migration of 85 Sr solution in two liquid phases (deionized and synthetic granitic water); and (4) the transport of a radiocolloid suspension in deionized water was studied. Results showed different behaviour of bentonite colloids and strontium in the column. Bentonite colloids behaved as a non-sorbing tracer: conversely, strontium showed strong sorption on granitic material. The strontium transport in the presence of bentonite colloids differed from strontium transport itself. The strontium transport in the presence of colloids was faster than transport without the bentonite colloids. The observed retention of strontium on granite suggests a higher affinity of strontium towards granitic rock than towards bentonite colloids, and showed the reversibility of the sorption of strontium on bentonite colloids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.