Purpose
The purpose of this paper is to describe the approach for the design of a jet engine composite air inlet for a new generation of jet trainer aircraft from the perspective of airworthiness requirements regarding high-speed impact resistance.
Design/methodology/approach
Validated numerical simulation was applied to flat test panels. The final design was optimised and verified by validated numerical simulation and verified by testing on a full-scale demonstrator. High-speed camera measurement and non-destructive testing (NDT) results were used for the verification of the numerical models.
Findings
The test results of flat test panels confirmed the high durability of the composite structure during inclined high-speed impact with a near-real jet inlet load boundary condition.
Research limitations/implications
Owing to the sensitivity of the composite material on technology production, the results are limited by the material used and the production technology.
Practical implications
The application of flat test panels for the verification and tuning of numerical models allows optimised final design of the air inlet and reduces the risk of structural non-compliance during verification tests.
Originality/value
Numerical models were verified for simulation of the real composite structure based on high-speed camera results and NDT inspection after impact. The proposed numerical model was simplified for application in a real complex design and reduced calculation time.
Abstract. Bird or hail stone impacts are an important phenomenon that must be taken into consideration when designing aircraft. As engines are the sole thrust-providing mechanisms of an aircraft, it is critical that the effects of bird or hail stone strikes on engine inlets and systems be investigated and mitigated to the greatest extent possible. A combination of experiments and numerical simulations is necessary to properly understand the behaviour of a bird or hail stone during impact and the reaction of the impacted material with the structure. A simulation methodology is developed and validated to certify the bird or hail stone strike resistance of composite air ducts designed for a new generation of jet training aircraft. Physical impact tests were performed on real composite parts. Numerical simulation results were compared with test results. Numerical simulation was also used for test preparation and optimization of the test rig design from the point of view of the influence of the stiffness of the surrounding aircraft structure. The validated modelling procedure allows the analysis of numerous impact scenarios, improving the optimization procedures for aircraft component design and reducing the cost of development by reducing the need to manufacture test prototypes.
The relationship between deformation and stress is crucial for any elasto-plastic body. This paper deals with the experimental identification of the basic parameters of the composite laminate model in relation to the finite element model. Standardized tensile, impact, and post-impact tests on a carbon fiber-reinforced epoxy laminate were used. The method by which the elasticity and failure parameters were obtained from the initial components is described. In the article, the modes of initiation and complete failure of samples in tensile tests, which are compared with the simulation, are presented. Furthermore, the article deals with the issue of the generation and detection of damage by low-speed impact, which can be caused by contact with moving objects, due to improper handling or maintenance. The results of impact analysis simulations are shown in the context of strain-field distribution changes obtained with the help of digital image correlation. The results showed high agreement between the calculations and the experiments. Based on this agreement, simulations of impact damage for various energies were performed. These simulations were used to determine the approximate sizes of the affected zones in relation to the impact energy. The results are finally discussed in the context of the possible use of structural health monitoring based on strain modifications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.