Herein, we designed and synthesizeda series of 1,2,3‐triazole tethered 3‐hydroxy‐2‐oxindoles (4 a‐j) using N‐propargyl isatin derivatives as key starting materials (1 a‐d) under ball‐milling conditions by merging aldol condensation and click reaction. The synthesized compounds (4 a‐j) were examined for their corrosion inhibition behavior in mild steel using gravimetric and electrochemical analysis. The compound 4 i was identified as the most efficient compound with an efficiency of >70%. Also, the adsorption of inhibitors on the surface of mild steel and mixed type of behaviors was evidenced by impedance and Tafel polarization studies, respectively. Further, the evaluation of antibacterial and antifungal activities demonstrated that compound 4 gpossessed a significant potential to behave as an antimicrobial agent.
The study was designed to assess whether plant extracts / phytochemical (D-Pinitol) synergistically combine with antituberculosis drugs and act on Mycobacterium smegmatis (M. smegmatis) as well as assess their mode of action on Mycobacterium tuberculosis (M.tb) Filamenting temperature sensitive mutant Z (FtsZ) protein. Resazurin microtitre plate assay (Checker board) was performed to analyze the activity of plant extracts against M. smegmatis. Synergistic behaviour of plant extracts / D-Pinitol with Isoniazid (INH) and Rifampicin (RIF) were determined by time-kill and checker board assays. Elongation of M. smegmatis cells due to this treatment was determined by light microscopy. The effect of Hexane methanol extract (HXM) plant extracts on cell viability was determined using PI/SYTO9 dual dye reporter Live/Dead assay. Action of HXM plant extracts / D-Pinitol on inhibition of FtsZ protein was done using Guanosine triphosphatase (GTPase) light scattering assay and quantitative Polymerase Chain Reaction (qPCR). The Hexane-methanolic plant extract of Acacia nilotica, Aegle marmelos and Glycyrrhiza glabra showed antimycobacterial activity at 1.56 ± 0.03, 1.32 ± 0.02 and 1.25 ± 0.03 mg/ mL respectively and that of INH and RIF were 4.00 ± 0.06 μg/mL and 2.00 ± 0.04 μg/mL respectively. These plant extracts and major phytochemical exudate D-Pinitol was found to act synergistically with antimycobacterial drugs INH and RIF with an FIC index~0.20. Time-Kill kinetics studies indicate that, these plant extracts were bacteriostatic in nature. D-Pinitol in conjunction with INH and RIF exhibited a 2 Log reduction in the growth of viable cells compared to untreated. Attempt to elucidate their mode of action through phenotypic analysis indicated that these plant extracts and D-Pinitol was found to interfere in cell division there by leading to an abnormal elongated cellular morphology. HXM extracts and D-Pinitol synergistically combined with the first line tuberculosis drugs, INH and RIF, to act on M. smegmatis. The increase in the length of M. smegmatis cells on treatment with D-Pinitol and HXM extract of the plants indicated that they hinder the cell division mechanism thereby leading to a filamentous phenotype, and finally leading to cell death. In addition, the integrity of the bacterial cell membrane is also altered causing cell death. Further gene expression analysis showed that these plant extracts and D-Pinitol hampers
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.