In this work, we report the antioxidant and free radical scavenging activity of 6-bromoeugenol and eugenol. EC50, the concentration providing 50% inhibition, is calculated and the antioxidant activity index (AAI) is evaluated. The antioxidant activity was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging method. EC50 values of 6-bromoeugenol, ascorbic acid and eugenol were 34.270 μg/mL, 54.888 μg/mL and 130.485 μg/mL, respectively. 6-Bromoeugenol showed higher AAI value (1.122) followed by ascorbic acid (0.700), then by eugenol (0.295). We also investigate the kinetics of DPPH radical scavenging activity of our products to determine the useful parameter TEC50 to evaluate their antiradical efficiency (ARE). Our results have shown high ARE. This study has provided the following ARE ( × 10(-3)) order for the tested antioxidants: ascorbic acid (70.119)>6-bromoeugenol (34.842) > eugenol (21.313). Finally, we classify ascorbic acid and eugenol as fast kinetics reaction (TEC50 8.82 and 11.38 min, respectively) and 6-bromoeugenol as medium kinetics reaction (TEC50 39.24 min).
We investigated the conformational structure of eugenol and eugenyl acetate under torsional angle effect by performing semiempirical calculations using AM1 and PM3 methods. From these calculations, we have evaluated the strain energy of conformational interconversion. To provide a better estimate of stable conformations, we have plotted the strain energy versus dihedral angle. So, we have determined five geometries of eugenol (three energy minima and two transition states) and three geometries of eugenyl acetate (two energy minima and one transition state). From the molecular orbital calculations, we deduce that the optimized trans form by AM1 method is more reactive than under PM3 method. We can conclude that both methods are efficient. The AM1 method allows us to determine the reactivity and PM3 method to verify the stability.
Two novel thiosemicarbazones ligands have been synthesized and characterized by FT-IR, ESI-MS, 1 H NMR, and also by single-crystal X-ray diffraction for L1. The crystal structure shows that L1 molecules are planar and are connected via N-H-S and O-H-S interactions. The catecholase activity of is situ copper and cobalt complexes of this ligands has been investigated against 3,5-di-tert-butylcatechol. The progress of the oxidation reactions was closely monitored over time following the strong peak of 3,5-DTBC using UV-Vis. Oxidation rates were determined from the initial slope of absorbance vs. time plots, then analyzed by Michaelis-Menten equations. Catechol oxidation reactions were realized using different concentrations of copper and cobalt acetate and ligands (L/Cu: 1/1, 1/2, 2/1). The results show that all complexes were able to catalyze the oxidation of 3,5-DTBC. Acetate complexes have the highest activity. CuL1 and CoL1 complexes act as a catalyst and inhibitor. While copper and cobalt complexes obtained from ligand L2 illustrate concentration-independent oxidation activation. The hemolysis study performed by L1 increases as a function of its concentration. However, ligand L2 has no hemolytic effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.