The aim of this study was to test the potential of high molecular weight exopolysaccharide (EPS) produced by the putative probiotic strain Lactobacillus paraplantarum BGCG11 (EPS CG11) to alleviate inflammatory pain in Wistar rats. The EPS CG11 was isolated from bacterial surface and was subjected to Fourier-transform infrared spectroscopy (FTIR) and thermal analysis. FTIR spectra confirmed the polysaccharide structure of isolated sample, while the thermal methods revealed good thermal properties of the polymer. The antihyperalgesic and antiedematous effects of the EPS CG11 were examined in the rat model of inflammation induced by carrageenan injection in hind paw. The results showed that the intraperitoneal administration of EPS CG11 produced a significant decrease in pain sensations (mechanical hyperalgesia) and a paw swelling in a dose-dependent manner as it was measured using Von Frey anesthesiometer and plethysmometer, respectively. These effects were followed by a decreased expression of IL-1β and iNOS mRNAs in rat’s paw tissue suggesting that the antihyperalgesic and antiedematous effects of the EPS CG11 are related to the suppression of inflammatory response. Additionally, we demonstrated that EPS CG11 exhibits immunosuppressive properties in the peritonitis model induced by carrageenan. Expression levels of pro-inflammatory mediators IL-1β, TNF-α and iNOS were decreased, together with the enhanced secretion of anti-inflammatory IL-10 and IL-6 cytokines, while neutrophil infiltration was not changed. To the best of our knowledge, this is the first study which reports an antihyperalgesic effect as the novel property of bacterial EPSs. Given the high demands of pharmaceutical industry for the replacement of commonly used analgesics due to numerous side effects, this study describes a promising natural compound for the future pharmacological testing in the area.
Ceftriaxone exerts antihyperalgesia/antinociception in both somatic and visceral inflammatory pain. Its efficacy is higher after a 7-day pretreatment than after acute administration. The two-drug combinations of ceftriaxone and the nonsteroidal analgesics/levetiracetam have synergistic interactions in both pain models. These results suggest that ceftriaxone, particularly in combinations with ibuprofen, celecoxib, paracetamol, or levetiracetam, may provide useful approach to the clinical treatment of inflammation-related pain.
The antinociceptive effects of carbamazepine and oxcarbazepine, and the influence of caffeine, were examined in a paw pressure test in rats. Carbamazepine (10-40 mg/kg; intraperitoneal, i.p.) and oxcarbazepine (40-160 mg/kg; i.p.) caused a significant dose-dependent reduction of the paw inflammatory hyperalgesia induced by concanavalin A (Con A), intraplantarly (i.p1.). A comparable pattern of antinociceptive effect of carbamazepine and oxcarbazepine was observed; the only difference is their potency, in that carbamazepine was about three times more potent than oxcarbazepine. Caffeine (5-20mg/kg; i.p.), a non-selective adenosine receptor antagonist, significantly depressed the antinociceptive effects of carbamazepine and oxcarbazepine, in a dose- and time-dependent manner. Also, a significant depression of the antinociceptive effects of carbamazepine and oxcarbazepine was observed by pretreatment with 1,3-dipropyl-8-cyclopentylxantine (DPCPX, 0.4 and 0.8 mg/kg; i.p.), an adenosine A(1) receptor antagonist. These findings indicate that, in a paw inflammatory hyperalgesia in rats, the antinociceptive effects of both drugs are, at least partially, mediated by adenosine A(1) receptors. In conclusion, the present study suggests the potential clinical importance of carbamazepine and oxcarbazepine in the treatment of inflammatory pain. In addition, caffeine consumption could possibly depress the analgesic effects of both anticonvulsive drugs.
These results indicate that oxcarbazepine, gabapentin, and topiramate are effective in the writhing model in mice, in a dose range, which is not related to motor impairment; topiramate is the most potent and the most tolerable drug.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.