a b s t r a c tVarious methods have been used to obtain improvements of the Goppa lower bound for the minimum distance of an algebraic geometric code. The main methods divide into two categories, and all but a few of the known bounds are special cases of either the Lundell-McCullough floor bound or the Beelen order bound. The exceptions are recent improvements of the floor bound by Güneri, Stichtenoth, and Taskin, and by Duursma and Park, and of the order bound by Duursma and Park, and by Duursma and Kirov. In this paper, we provide short proofs for all floor bounds and most order bounds in the setting of the van Lint and Wilson AB method. Moreover, we formulate unifying theorems for order bounds and formulate the DP and DK order bounds as natural but different generalizations of the Feng-Rao bound for one-point codes.
One-point codes on the Hermitian curve produce long codes with excellent parameters. Feng and Rao introduced a modified construction that improves the parameters while still using one-point divisors. A separate improvement of the parameters was introduced by Matthews considering the classical construction but with two-point divisors. Those two approaches are combined to describe an elementary construction of two-point improved codes. Upon analysis of their minimum distance and redundancy, it is observed that they improve on the previous constructions for a large range of designed distances.
The most successful method to obtain lower bounds for the minimum distance of an algebraic geometric code is the order bound, which generalizes the Feng-Rao bound. We provide a significant extension of the bound that improves the order bounds by Beelen and by Duursma and Park. We include an exhaustive numerical comparison of the different bounds for 10168 two-point codes on the Suzuki curve of genus g = 124 over the field of 32 elements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.