Abstract. Every kind of honey is a very precious natural product which is made by Mellifera bees species. The chemical composition of honey depends on its origin or mode of production. Honey consists essentially of different sugars, predominantly fructose and glucose. There are also nonsugar ingredients like proteins and amino acids, as well as some kind of enzymes, such as: invertase, amylase, glucose oxidase, catalase and phosphatase. The fact that honey is one of the oldest medicine known worldwide is remarkable. Scientists all over the world have been trying to improve analytical methods as well as to implement new ones in order to reaffirm the high quality of honey the benefits of which may be distracted or disturbed. There are many methods and popular analytical techniques, including as follows: mass spectroscopy and molecular spectroscopy (especially FTIR spectroscopy). The infrared spectroscopy technique is one of the most common analytical methods which are used to analyse honey nowadays. The main aim of the task was to use ATR-FTIR infrared spectroscopy to compare selected honey samples as well as typical sequences coming out from certain functional groups in the analysed samples.
Three novel 1,3,4-tiadiazole-derived compounds with biological-activity, i.e., 4-(5-(methylamino)-1,3,4-thiadiazol-2-yl)benzene-1,3-diol (MDFT), 4-(5-(phenylamino)-1,3,4-thiadiazol-2-yl)benzene-1,3-diol (PhATB), and 4-(5-(4-chlorophenylamino)-1,3,4-thiadiazol-2-yl)benzene-1,3-diol (4-CIPhATB) were characterized with the use of several spectroscopic methods. Detailed UV-vis studies revealed keto/enol tautomerism of the examined compounds. The absorption spectra recorded in nonpolar solvents exhibited bands that were characteristic of keto tautomers, while in polar solvents the enol form is predominant. A number of spectra revealed the presence of both tautomeric forms in the solution. The keto/enol equilibria observed were both solvent- and temperature-dependent. The keto/enol equilibrium was also observed using FTIR spectroscopy. A detailed analysis of the spectroscopic data leads to a conclusion that the solvent-induced tautomerism of the selected compounds from the 1,3,4-thiadiazole group does not depend on the electric dipole moment of the solvent but more likely on its average electric polarizability. Additionally, a clear effect of the substituent present in the molecule on the tautomeric equilibrium in the selected 1,3,4-thiadiazole analogues was noted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.