The paper contains the theoretical and experimental analysis of the impact of the drawing angle on the drawing process and the properties of low carbon steel wires. A multi-stage drawing wire rod with a diameter of 5.5 mm on a wire with a diameter of 1.0 mm has been carried out in two stages. The first one consisted of preliminary drawing wire rod for the wire with a diameter of 2.2 mm which was next subjected to the drawing process at a speed of 25 m/sec at the final wire with a diameter of 1.0 mm. The wires were drawn in conventional dies with drawing angle α = 3, 4, 5, 6, 7 degrees.For the wires drawn in respective variants, the investigation of the mechanical properties was performed and the amount of lubricant on the surface of steel wires was determined. Numerical analysis of the process of drawing in the Drawing 2D complemented the experimental studies.It has been shown that when drawing at high speeds, properly chosen the value of the angle of the working part of the die can improve the lubrication conditions and mechanical properties of steel wires.
This paper discusses experimental studies aiming to determine the effect of the drawing method on the lubrication conditions, zinc coating mass and mechanical properties of medium-carbon steel wires. The test material was 5.5 mm-diameter galvanized wire rod which was drawn into 2.2 mm-diameter wire in seven draws at a drawing speed of 5, 10, 15, 20 and 20 m/s, respectively. Conventional and hydrodynamic dies with a working portion angle of α = 5° were used for the drawing process. It has been shown that using hydrodynamic dies in the process of multi-stage drawing of zinc-coated wire improves the lubrication conditions, which leads to a reduction in friction at the wire/die interface. As a consequence, wires drawn hydrodynamically, as compared to wires drawn conventionally, are distinguished by a thicker zinc coating and better mechanical and technological properties.
The phenomenon of corrosion on wires and springs covered with an anti-corrosive zinc coating was investigated. To assess the corrosion resistance of galvanised wires, tests were carried out in the standard neutral salt spray corrosion test and in the sulphur dioxide test with general moisture condensation. The spring corrosion process depends on the wire drawing technology. The research showed that the higher the drawing speed and angle, the more dynamic the corrosion development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.