The standard pooling problem is a NP-hard subclass of non-convex quadraticallyconstrained optimization problems that commonly arises in process systems engineering applications. We take a parametric approach to uncovering topological structure and sparsity, focusing on the single quality standard pooling problem in its p-formulation. The structure uncovered in this approach validates Professor Christodoulos A. Floudas' intuition that pooling problems are rooted in piecewise-defined functions. We introduce dominant active topologies under relaxed flow availability to explicitly identify pooling problem sparsity and show that the sparse patterns of active topological structure are associated with a piecewise objective function. Finally, the paper explains the conditions under which sparsity vanishes and where the combinatorial complexity emerges to cross over the P/N P boundary. We formally present the results obtained and their derivations for various specialized single quality pooling problem subclasses.
Designing and analyzing algorithms with provable performance guarantees enables efficient optimization problem solving in different application domains, e.g. communication networks, transportation, economics, and manufacturing. Despite the significant contributions of approximation algorithms in engineering, only limited and isolated works contribute from this perspective in process systems engineering. The current paper discusses three representative, N P-hard problems in process systems engineering: (i) pooling, (ii) process scheduling, and (iii) heat exchanger network synthesis. We survey relevant results and raise major open questions. Further, we present approximation algorithms applications which are relevant to process systems engineering: (i) better mathematical modeling, (ii) problem classification, (iii) designing solution methods, and (iv) dealing with uncertainty. This paper aims to motivate further research at the intersection of approximation algorithms and process systems engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.