In this work, we combine nature's amazing bioadhesive catechol with the excellent bioinert synthetic macromolecule hyperbranched polyglycerol (hPG) to prepare antifouling surfaces. hPG can be functionalized by different amounts of catechol groups for multivalent anchoring and cross-linking because of its highly branched architecture. The catecholic hPGs can be immobilized on various surfaces including metal oxides, noble metals, ceramics, and polymers via simple incubation procedures. The effect of the catechol amount on the immobilization, surface morphology, stability, and antifouling performance of the coatings was studied. Both anchoring and cross-linking interactions provided by catechols can enhance the stability of the coatings. When the catechol groups on the hPG are underrepresented, the tethering of the coating is not effective; while an overrepresentation of catechol groups leads to protein adsorption and cell adhesion. Thus, only a well-balanced amount of catechols as optimized and described in this work can supply the coatings with both good stability and antifouling ability.
A series of nonionic amphiphiles derived from polyglycerol dendrons were studied for their ability to solubilize and isolate single-walled carbon nanotubes. The amphiphiles possessed differently sized polar head groups, hydrophobic tail units, and various aromatic and non-aromatic groups between the head and tail groups. Absorbance analysis revealed that amphiphiles with anchor groups derived from pyrene were far inferior to those that possessed simple linear aliphatic tail groups. Absorbance and near-infrared fluorescence analyses revealed a weak dependence on the dendron size of the head group, but a strong positive trend in suspended nanotube density and fluorescence intensity for amphiphiles with longer tail units. Variations in the moieties linking the head and tail groups led to a range of effects on the suspensions, with linkers imparting flexibility and a bent shape that gave improved performance overall. This was illustrated most dramatically by a pair of benzamide-containing amphiphiles, the para isomer of which showed evidence in the fluorescence data of increased nanotube aggregate formation when compared with the meta isomer. In addition, statistical AFM was used to illustrate more directly the microscopic differences between amphiphiles that were effective at nanotube bundle disruption and those that were not.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.