Automatic document classification has become an important task because of the continually increasing number of text documents with the users have to deal with. The aim of this paper is to develop a non-adaptive meta-classifier for text documents that has an increased classification accuracy. The developed meta-classifier is based on combining some SVM classifiers and a Naïve Bayes classifier. We proposed a new meta-classification method which takes into consideration the corresponding positions and confidence degrees obtained for all the classes. In this work we have tried to find, using Genetic Algorithms, the optimal weighting factors for the values returned by each classifier separately. Consequently, it is possible for the meta-classifier to select as the winner class, a class that is not hierarchized as the first one by any of the compounded classifiers. The experimental results have showed that the classification accuracy can be improved through the proposed method.
In this paper, we will present experiments that try to integrate the power of Word Embedding representation in real problems for documents classification. Word Embedding is a new tendency used in the natural language processing domain that tries to represent each word from the document in a vector format. This representation embeds the semantically context in that the
In the 1950s, Hagelbarger’s Sequence Extrapolating Robot (SEER) and Shannon’s Mind-Reading Machine (MRM) were the state-of-the-art research results in playing the well-known “matching pennies” game. In our research we perform a software implementation for both machines in order to test the common statement that MRM, even simpler, beats SEER. Also, we propose a simple contextual predictor (SCP) and use it to compete with SEER and MRM. As expected, experimental results proves the claimed MRM superiority over SEER and even the SCP’s superiority over both SEER and MRM. At the end, we draw some conclusions and propose further research ideas, like the use of mixing models methods and the use of Hidden Markov Model for modelling player’s behaviour.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.