Link to this article: http://journals.cambridge.org/abstract_S0143385707000405 How to cite this article: YONGXIA HUA, RADU SAGHIN and ZHIHONG XIA (2008). Topological entropy and partially hyperbolic diffeomorphisms.Abstract. We consider partially hyperbolic diffeomorphisms on compact manifolds. We define the notion of the unstable and stable foliations stably carrying some unique nontrivial homologies. Under this topological assumption, we prove the following two results: if the center foliation is one-dimensional, then the topological entropy is locally a constant; and if the center foliation is two-dimensional, then the topological entropy is continuous on the set of all C ∞ diffeomorphisms. The proof uses a topological invariant we introduced, Yomdin's theorem on upper semi-continuity, Katok's theorem on lower semi-continuity for two-dimensional systems, and a refined Pesin-Ruelle inequality we proved for partially hyperbolic diffeomorphisms.
We consider hyperbolic and partially hyperbolic diffeomorphisms on compact manifolds. Associated with invariant foliation of these systems, we define some topological invariants and show certain relationships between these topological invariants and the geometric and Lyapunov growths of these foliations. As an application, we show examples of systems with persistent nonabsolute continuous center and weak unstable foliations. This generalizes the remarkable results of Shub and Wilkinson to cases where the center manifolds are not compact.
In this paper we obtain local rigidity results for linear Anosov diffeomorphisms in terms of Lyapunov exponents. More specifically, we show that given an irreducible linear hyperbolic automorphism L with simple real eigenvalues with distinct absolute values, any small perturbation preserving the volume and with the same Lyapunov exponents is smoothly conjugate to L.We also obtain rigidity results for skew products over Anosov diffeomorphisms. Given a volume preserving partially hyperbolic skew product diffeomorphism f 0 over an Anosov automorphism of the 2-torus, we show that for any volume preserving perturbation f of f 0 with the same average stable and unstable Lyapunov exponents, the center foliation is smooth.
Abstract. We investigate the invariant probability measures for Cherry flows, i.e. flows on the two-torus which have a saddle, a source, and no other fixed points, closed orbits or homoclinic orbits. In the case when the saddle is dissipative or conservative we show that the only invariant probability measures are the Dirac measures at the two fixed points, and the Dirac measure at the saddle is the physical measure. In the other case we prove that there exists also an invariant probability measure supported on the quasi-minimal set, we discuss some situations when this other invariant measure is the physical measure, and conjecture that this is always the case. The main techniques used are the study of the integrability of the return time with respect to the invariant measure of the return map to a closed transversal to the flow, and the study of the close returns near the saddle.
Abstract. We prove that if a symplectic diffeomorphism is not partially hyperbolic, then with an arbitrarily small C 1 perturbation we can create a totally elliptic periodic point inside any given open set. As a consequence, a C 1 -generic symplectic diffeomorphism is either partially hyperbolic or it has dense elliptic periodic points. This extends the similar results of S. Newhouse in dimension 2 and M.-C. Arnaud in dimension 4. Another interesting consequence is that stably ergodic symplectic diffeomorphisms must be partially hyperbolic, a converse to Shub-Pugh's stable ergodicity conjecture for the symplectic case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.