2008
DOI: 10.1017/s0143385707000405
|View full text |Cite
|
Sign up to set email alerts
|

Topological entropy and partially hyperbolic diffeomorphisms

Abstract: Link to this article: http://journals.cambridge.org/abstract_S0143385707000405 How to cite this article: YONGXIA HUA, RADU SAGHIN and ZHIHONG XIA (2008). Topological entropy and partially hyperbolic diffeomorphisms.Abstract. We consider partially hyperbolic diffeomorphisms on compact manifolds. We define the notion of the unstable and stable foliations stably carrying some unique nontrivial homologies. Under this topological assumption, we prove the following two results: if the center foliation is one-dimensi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

3
51
0
3

Year Published

2011
2011
2022
2022

Publication Types

Select...
5
1
1

Relationship

1
6

Authors

Journals

citations
Cited by 39 publications
(57 citation statements)
references
References 5 publications
3
51
0
3
Order By: Relevance
“…The proof of this result is based on a Pesin-Ruelle-like inequality proved by Y. Hua, R. Saghin and Z. Xia in [10]. Before going into the proof, let us introduce their result.…”
Section: The Center Exponentmentioning
confidence: 99%
See 1 more Smart Citation
“…The proof of this result is based on a Pesin-Ruelle-like inequality proved by Y. Hua, R. Saghin and Z. Xia in [10]. Before going into the proof, let us introduce their result.…”
Section: The Center Exponentmentioning
confidence: 99%
“…The aim of this description is to show that the system is, in some sense, "intrinsically Anosov". On the one hand, in Section 5 we shall prove, based on a Pesin-Ruelle-like inequality obtained by Y. Hua, R. Saghin and Z. Xia [10], that the center exponent has absolute value greater than or equal to the center exponent of its linear part if we are in the conditions of Theorem 1.1. Observe that, in particular, this implies the presence of many hyperbolic periodic points with large center eigenvalue.…”
Section: Introductionmentioning
confidence: 97%
“…No trabalho [HSX08] de Hua, Saghin e Xia é apresentado um exemplo de descontinuidade da entropia para sistemas definidos em variedades de dimensões maiores ou iguais que quatro.…”
Section: Continuidade Da Entropia Topológicaunclassified
“…A entropia é estável para sistemas uniformemente hiperbólicos, isto é, permanece a mesma por pequenas perturbações do sistema. Mas em geral, a entropia não é contínua para difeomorfismo de classe C 1 , veja [Mis71], [Pol93] e [HSX08] para exemplos. Por Yomdin [Yom87] e Katok [Pol93], a entropia varia continuamente na classe de difeomorfismos C ∞ definidos numa superfície compacta.…”
Section: Introductionunclassified
See 1 more Smart Citation