Abstract-Process-induced variations and sub-threshold leakage in bulk-Si technology limit the scaling of SRAM into sub-32 nm nodes. New device architectures are being considered to improve control and reduce short channel effects. Among the likely candidates, FinFETs are the most attractive option because of their good scalability and possibilities for further SRAM performance and yield enhancement through independent gating. The enhancements to read/write margins and yield are investigated in detail for two cell designs employing independently gated FinFETs. It is shown that FinFET-based 6-T SRAM cells designed with pass-gate feedback (PGFB) achieve significant improvements in the cell read stability without area penalty. The write-ability of the cell can be improved through the use of pull-up write gating (PUWG) with a separate write word line (WWL). The benefits of these two approaches are complementary and additive, allowing for simultaneous read and write yield enhancements when the PGFB and PUWG designs are used in combination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.