Decreasing supplies of high quality crude oil and increasing demand for high quality distillates have motivated the interest in converting natural gas to liquid fuels, especially with the present boom in natural gas proven reserves. Nevertheless, one major issue is the curtailment of costs incurred in producing synthesis gas from natural gas, which account for approximately 60% of the costs used in producing liquid fuels. While there are three main routes to convert natural gas to syngas: steam reforming (SMR), partial Oxidation (POX) and auto-thermal reforming (ATR). Significant new developments and improvements in these technologies, established innovative processes to minimize greenhouse gases emission, minimize energy consumption, enhance syngas processes, adjust the desired H2/CO ratio and change the baseline economics. This article reviews the state of the art for the reforming of natural gas to synthesis gas taking into consideration all the new innovations in both processes and catalysis.
Activated carbon (AC), prepared from sugarcane bagasse waste through a low-temperature chemical carbonization treatment, was used as a support for nano-TiO. TiO supported on AC (xTiO-AC) catalysts (x = 10, 20, 50, and 70 wt.%) were prepared through a mechano-mixing method. The photocatalysts were characterized by Raman, X-ray diffraction analysis, FTIR, S, field emission scanning electron microscope, and optical technique. The adsorption and photo-activity of the prepared catalysts (xTiO-AC) were evaluated using methylene blue (MB) dye. The photocatalytic degradation of MB was evaluated under UVC irradiation and visible light. The degradation percentage of the 100 ppm MB at neutral pH using 20TiO-AC reaches 96 and 91 after 180 min under visible light and UV irradiation, respectively. In other words, these catalysts are more active under visible light than under UV light irradiation, opening the possibility of using solar light for this application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.