Molecular motor proteins use the energy released from ATP hydrolysis to generate force and haul cargoes along cytoskeletal filaments. Thus, measuring the force motors generate amounts to directly probing their function. We report on optical trapping methodology capable of making precise in vivo stall-force measurements of individual cargoes hauled by molecular motors in their native environment. Despite routine measurement of motor forces in vitro, performing and calibrating such measurements in vivo has been challenging. We describe the methodology recently developed to overcome these difficulties, and used to measure stall forces of both kinesin-1 and cytoplasmic dynein-driven lipid droplets in Drosophila embryos. Critically, by measuring the cargo dynamics in the optical trap, we find that there is memory: it is more likely for a cargo to resume motion in the same direction-rather than reverse direction-after the motors transporting it detach from the microtubule under the force of the optical trap. This suggests that only motors of one polarity are active on the cargo at any instant in time and is not consistent with the tug-of-war models of bidirectional transport where both polarity motors can bind the microtubules at all times. We further use the optical trap to measure in vivo the detachment rates from microtubules of kinesin-1 and dynein-driven lipid droplets. Unlike what is commonly assumed, we find that dynein's but not kinesin's detachment time in vivo increases with opposing load. This suggests that dynein's interaction with microtubules behaves like a catch bond.
Summary Fracturing-fluid loss into the formation can potentially damage hydrocarbon production in shale or other tight reservoirs. Well shut-ins are commonly used in the field to dissipate the lost water into the matrix near fracture faces. Borrowing from ideas in chemical enhanced oil recovery (CEOR), surfactants have potential to reduce the effect of fracturing-fluid loss on hydrocarbon permeability in the matrix. Unconventional tight reservoirs can differ significantly from one another, which could make the use of these techniques effective in some cases but not in others. We present an experimental investigation dependent on a coreflood sequence that simulates fluid invasion, flowback, and hydrocarbon production from hydraulically fractured reservoirs. We compare the benefits of shut-ins and reduction in interfacial tension (IFT) by surfactants for hydrocarbon permeability for different initial reservoir conditions (IRCs). From this work, we identify the mechanism responsible for the permeability reduction in the matrix, and we suggest criteria that can be used to optimize fracturing-fluid additives and/or manage flowback operations to enhance hydrocarbon production from unconventional tight reservoirs.
Drosophila melanogaster is widely used as a model system for development and disease. Due to the homology between Drosophila and human genes, as well as the tractable genetics of the fly, its use as a model for neurologic disorders, in particular, has been rising. Locomotive impairment is a commonly used diagnostic for screening and characterization of these models, yet a fast, sensitive and model-free method to compare behavior is lacking. Here, we present a high throughput method to quantify the crawling behavior of larvae. We use the mean squared displacement as well as the direction autocorrelation of the crawling larvae as descriptors of their motion. By tracking larvae from wild-type strains and models of the Fragile X mental retardation as well as Alzheimer disease, we show these mutants exhibit impaired crawling. We further show that the magnitude of impairment correlates with the severity of the mutation, demonstrating the sensitivity and the dynamic range of the method. Finally, we study larvae with altered expression of the shaggy gene, a homolog of Glycogen Synthase Kinase-3 (GSK-3), which has been implicated in Alzheimer disease. Surprisingly, we find that both increased and decreased expression of dGSK-3 lead to similar larval crawling impairment. These findings have implications for the use of GSK-3 inhibitors recently proposed for Alzheimer treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.