A novel method to fabricate micromodels with varying depth (2.5-D) was developed, which allows more realistic investigation on flow in natural 3-D porous media.
Summary
Fracturing-fluid loss into the formation can potentially damage hydrocarbon production in shale or other tight reservoirs. Well shut-ins are commonly used in the field to dissipate the lost water into the matrix near fracture faces. Borrowing from ideas in chemical enhanced oil recovery (CEOR), surfactants have potential to reduce the effect of fracturing-fluid loss on hydrocarbon permeability in the matrix. Unconventional tight reservoirs can differ significantly from one another, which could make the use of these techniques effective in some cases but not in others. We present an experimental investigation dependent on a coreflood sequence that simulates fluid invasion, flowback, and hydrocarbon production from hydraulically fractured reservoirs. We compare the benefits of shut-ins and reduction in interfacial tension (IFT) by surfactants for hydrocarbon permeability for different initial reservoir conditions (IRCs). From this work, we identify the mechanism responsible for the permeability reduction in the matrix, and we suggest criteria that can be used to optimize fracturing-fluid additives and/or manage flowback operations to enhance hydrocarbon production from unconventional tight reservoirs.
Micromodels have
been widely used to visualize surfactant flooding,
which provides new insights into understanding pore-scale events during
displacement. In this review, recent advances in micromodel studies
of surfactant flooding are briefly summarized. The mechanisms of surfactant
flooding as demonstrated by micromodel studies are presented, as well
as pore-scale findings that cannot be captured by traditional coreflood
methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.