BackgroundFractional flow reverse (FFR) is the gold standard assessment of the hemodynamic significance of coronary stenoses. However, it requires the catheterization of the coronary artery to determine the pressure waveforms proximal and distal to the stenosis. On the contrary, computational fluid dynamics enables the calculation of the FFR value from relatively non-invasive computed tomography angiography (CTA).MethodsWe analyze the flow across idealized highly-eccentric coronary stenoses by solving the Navier–Stokes equations. We examine the influence of several aspects (approximations) of the simulation method on the calculation of the FFR value. We study the effects on the FFR value of errors made in the segmentation of clinical images. For this purpose, we compare the FFR value for the nominal geometry with that calculated for other shapes that slightly deviate from that geometry. This analysis is conducted for a range of stenosis severities and different inlet velocity and pressure waveforms.Results and conclusionsThe errors made in assuming a uniform velocity profile in front of the stenosis, as well as those due to the Newtonian and laminar approximations, are negligible for stenosis severities leading to FFR values around the threshold 0.8. The limited resolution of the stenosis geometry reconstruction is the major source of error when predicting the FFR value. Both systematic errors in the contour detection of just 1-pixel size in the CTA images and a low-quality representation of the stenosis surface (coarse faceted geometry) may yield wrong outcomes of the FFR assessment for an important set of eccentric stenoses. On the contrary, the spatial resolution of images acquired with optical coherence tomography may be sufficient to ensure accurate predictions for the FFR value.
There is a continuous search for better and more complete in vitro models with mechanical properties closer to in vivo conditions. In this work a manufacturing process, based on a lost core casting technique, is herein reported to produce aneurysm biomodels to perform experimental hemodynamic studies. By using real artery images combined with a lost core casting technique, three materials were tested: paraffin, beeswax and glycerin-based soap. All in vitro biomodels were compared according to their transparency and final structure. Additionally, comparisons between experimental and numerical flow studies were also performed. The results have shown that the biomodels produced with beeswax and glycerine-based soap were the most suitable in vitro models to perform direct flow visualizations of particulate blood analogue fluids. The biomodels proposed in this works, have the potential to provide further insights into the complex blood flow phenomena happening at different kinds of pathologies and answer to important hemodynamics questions that otherwise cannot be tackled with the existing in vitro models.
PurposeTo compare aqueous humour (AH) dynamics in the presence of a precrystalline (Implantable Collamer Lens®; ICL) or iris-fixed (Artiflex®) phakic intraocular lens (PIOL).MethodsBy computational fluid dynamics simulation, AH flow was modelled through a peripheral iridotomy (PI) or central lens hole (both 360 μm) in the presence of an Artiflex or ICL lens, respectively. The impacts of AH flow were then determined in terms of wall shear stress (WSS) produced on the endothelium or crystalline lens. Effects were also modelled for different scenarios of pupil diameter (PD 3.5 or 5.5 mm), ICL vault (100, 350, 800 μm) and number of Artiflex iridotomies (1 or 2) and location (12 or 6 o’clock).ResultsFor a PD of 3.5 mm, AH volumes flowing from the posterior to the anterior chamber were 37.6% of total flow through the lens hole (ICL) and 84.2% through PI (Artiflex). For an enlarged PD (5.5 mm), corresponding values were 10.3% and 81.9% respectively, so PI constitutes a very efficient way of evacuating AH. Central endothelial WSS in Pa was lower for the large vault ICL and the Artiflex (1−03 and 1.1−03 respectively) compared to the PIOL-free eye (1.6−03). Crystalline lens WSS was highest for the lowest vault ICL (1−04).ConclusionsAH flow varied according to the presence of a precrystalline or iris-fixed intraocular lens. Endothelial WSS was lower for an implanted ICL with large vault and Artiflex than in the PIOL-free eye, while highest crystalline WSS was recorded for the lowest vault ICL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.