ATP-phosphoribosyltransferase (ATPPRT) catalyses the first step in histidine biosynthesis, the condensation of ATP and 5-phospho--D-ribosyl-1-pyrophosphate to generate N 1 -(5-phospho--D-ribosyl)-ATP and inorganic pyrophosphate. The enzyme is allosterically inhibited by histidine. Two forms of ATPPRT, encoded by the hisG gene, exist in nature, depending on the species. The long form, HisGL, is a single polypeptide chain with catalytic and regulatory domains. The short form, HisGS, lacks a regulatory domain, and cannot bind histidine. HisGS instead is found in complex with a regulatory protein, HisZ, constituting the ATPPRT holoenzyme. HisZ triggers HisGS catalytic activity while rendering it sensitive to allosteric inhibition by histidine. Until recently, HisGS was thought to be catalytically inactive without HisZ. Here, recombinant HisGS and HisZ from the psychrophilic bacterium Psychrobacter arcticus were independently overexpressed and purified. The crystal structure of P. arcticus ATPPRT was solved at 2.34-Å resolution, revealing an equimolar HisGS-HisZ hetero-octamer. Steady-state kinetics indicate that both ATPPRT holoenzyme and HisGS are catalytically active. Surprisingly, HisZ confers only a modest 2-to 4-fold increase in kcat.Reaction profiles for both enzymes are indistinguishable by 31 P-NMR, indicating that the same reaction is catalysed. Temperature dependence of kcat shows deviation from Arrhenius behaviour at 308 K with the holoenzyme. Interestingly, such deviation is detected only at 313 K with HisGS. Thermal denaturation by CD spectroscopy resulted in Tm's of 312 K and 316 K for HisZ and HisGS, respectively, suggesting that HisZ renders the ATPPRT complex more thermolabile. This is the first characterisation of a psychrophilic ATPPRT. 4Adenosine 5ʹ-triphosphate phosphoribosyltransferase (ATPPRT) (EC 2.4.2.17) catalyses the reversible Mg 2+ -dependent reaction between adenosine 5ʹ-triphosphate (ATP) and(PR-ATP) and inorganic pyrophosphate (PPi) (Scheme 1), the first step in histidine biosynthesis. 1 The chemical equilibrium of the reaction strongly favours reactants, 2 and the enzyme is allosterically inhibited by histidine. 1 In addition to being a model for understanding allostery, 2-4 ATPPRT is of biotechnological interest as a tool for histidine production, provided that histidine feedback inhibition can be overcome. [5][6][7] Two forms of ATPPRT, encoded by the hisG gene, are found in nature. Fungi, plants, and most bacteria possess a long, homo-hexameric protein, HisGL, each subunit consisting of two domains that make up the catalytic core and a C-terminal regulatory domain that mediates feedback inhibition by histidine. 8 Some bacteria and archaea have a short version of the protein, HisGS, which lacks the C-terminal regulatory domain and is insensitive to histidine. In these organisms, a catalytically inactive regulatory protein, HisZ, the product of the hisZ gene, is present. 9 HisZ, which shares a common ancestry with histidyl-tRNA synthetase (HisRS), binds HisGS to form ...
Allosteric modulation of catalysis is a common regulatory strategy of flux-controlling biosynthetic enzymes. The enzyme ATP phosphoribosyltransferase (ATPPRT) catalyses the first reaction in histidine biosynthesis, the magnesium-dependent condensation of ATP and 5phospho--D-ribosyl-1-pyrophosphate (PRPP) to generate N 1-(5-phospho--D-ribosyl)-ATP (PRATP) and pyrophosphate (PPi). ATPPRT is allosterically inhibited by the final product of the pathway, histidine. Hetero-octameric ATPPRT consists of four catalytic subunits (HisGS) and four regulatory subunits (HisZ) engaged in intricate catalytic regulation. HisZ enhances HisGS catalysis in the absence of histidine while mediating allosteric inhibition in its presence. Here we report HisGS structures for the apoenzyme and complexes with substrates (PRPP, PRPP-ATP, PRPP-ADP), product (PRATP), and inhibitor (AMP), along with ATPPRT holoenzyme structures in complexes with substrates (PRPP, PRPP-ATP, PRPP-ADP) and product (PRATP). These ten crystal structures provide an atomic view of the catalytic cycle and allosteric activation of Psychrobacter arcticus ATPPRT. In both ternary complexes with PRPP-ATP, the adenine ring is found in an anticatalytic orientation, rotated 180° from the catalytic rotamer. Arg32 interacts with phosphate groups of ATP and PRPP, bringing the substrates in proximity for catalysis. The negative charge repulsion is further attenuated by a magnesium ion sandwiched between the and -phosphate groups of both substrates. HisZ binding to form the hetero-octamer brings HisGS subunits closer together in a tighter dimer in the Michaelis complex, which poises Arg56 from the adjacent HisGS molecule for crosssubunit stabilisation of the PPi leaving group at the transition state. The more electrostatically pre-organised active site of the holoenzyme likely minimises the reorganisation energy required to accommodate the transition state. This provides a structural basis for allosteric activation in which chemistry is accelerated by facilitating leaving group departure.
Monoacylglycerol lipase (MAGL) inhibition provides a potential treatment approach to neuroinflammation through modulation of both the endocannabinoid pathway and arachidonoyl signaling in the central nervous system (CNS). Herein we report the discovery of compound 15 (PF-06795071), a potent and selective covalent MAGL inhibitor, featuring a novel trifluoromethyl glycol leaving group that confers significant physicochemical property improvements as compared with earlier inhibitor series with more lipophilic leaving groups. The design strategy focused on identifying an optimized leaving group that delivers MAGL potency, serine hydrolase selectivity, and CNS exposure while simultaneously reducing log D, improving solubility, and minimizing chemical lability. Compound 15 achieves excellent CNS exposure, extended 2-AG elevation effect in vivo, and decreased brain inflammatory markers in response to an inflammatory challenge.
Short-form ATP phosphoribosyltransferase (ATPPRT) is a hetero-octameric allosteric enzyme comprising four catalytic subunits (HisGS) and four regulatory subunits (HisZ). ATPPRT catalyzes the Mg2+-dependent condensation of ATP and 5-phospho-α-d-ribosyl-1-pyrophosphate (PRPP) to generate N1-(5-phospho-β-d-ribosyl)-ATP (PRATP) and pyrophosphate, the first reaction of histidine biosynthesis. While HisGS is catalytically active on its own, its activity is allosterically enhanced by HisZ in the absence of histidine. In the presence of histidine, HisZ mediates allosteric inhibition of ATPPRT. Here, initial velocity patterns, isothermal titration calorimetry, and differential scanning fluorimetry establish a distinct kinetic mechanism for ATPPRT where PRPP is the first substrate to bind. AMP is an inhibitor of HisGS, but steady-state kinetics and 31P NMR spectroscopy demonstrate that ADP is an alternative substrate. Replacement of Mg2+ by Mn2+ enhances catalysis by HisGS but not by the holoenzyme, suggesting different rate-limiting steps for nonactivated and activated enzyme forms. Density functional theory calculations posit an SN2-like transition state stabilized by two equivalents of the metal ion. Natural bond orbital charge analysis points to Mn2+ increasing HisGS reaction rate via more efficient charge stabilization at the transition state. High solvent viscosity increases HisGS’s catalytic rate, but decreases the hetero-octamer’s, indicating that chemistry and product release are rate-limiting for HisGS and ATPPRT, respectively. This is confirmed by pre-steady-state kinetics, with a burst in product formation observed with the hetero-octamer but not with HisGS. These results are consistent with an activation mechanism whereby HisZ binding leads to a more active conformation of HisGS, accelerating chemistry beyond the product release rate.
The temperature dependence of psychrophilic and mesophilic (R)-3-hydroxybutyrate dehydrogenase steady-state rates yields nonlinear and linear Eyring plots, respectively. Solvent viscosity effects and multiple- and single-turnover pre-steady-state kinetics demonstrate that while product release is rate-limiting at high temperatures for the psychrophilic enzyme, either interconversion between enzyme–substrate and enzyme–product complexes or a step prior to it limits the rate at low temperatures. Unexpectedly, a similar change in the rate-limiting step is observed with the mesophilic enzyme, where a step prior to chemistry becomes rate-limiting at low temperatures. This observation may have implications for past and future interpretations of temperature–rate profiles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.