Allosteric modulation of catalysis is a common regulatory strategy of flux-controlling biosynthetic enzymes. The enzyme ATP phosphoribosyltransferase (ATPPRT) catalyses the first reaction in histidine biosynthesis, the magnesium-dependent condensation of ATP and 5phospho--D-ribosyl-1-pyrophosphate (PRPP) to generate N 1-(5-phospho--D-ribosyl)-ATP (PRATP) and pyrophosphate (PPi). ATPPRT is allosterically inhibited by the final product of the pathway, histidine. Hetero-octameric ATPPRT consists of four catalytic subunits (HisGS) and four regulatory subunits (HisZ) engaged in intricate catalytic regulation. HisZ enhances HisGS catalysis in the absence of histidine while mediating allosteric inhibition in its presence. Here we report HisGS structures for the apoenzyme and complexes with substrates (PRPP, PRPP-ATP, PRPP-ADP), product (PRATP), and inhibitor (AMP), along with ATPPRT holoenzyme structures in complexes with substrates (PRPP, PRPP-ATP, PRPP-ADP) and product (PRATP). These ten crystal structures provide an atomic view of the catalytic cycle and allosteric activation of Psychrobacter arcticus ATPPRT. In both ternary complexes with PRPP-ATP, the adenine ring is found in an anticatalytic orientation, rotated 180° from the catalytic rotamer. Arg32 interacts with phosphate groups of ATP and PRPP, bringing the substrates in proximity for catalysis. The negative charge repulsion is further attenuated by a magnesium ion sandwiched between the and -phosphate groups of both substrates. HisZ binding to form the hetero-octamer brings HisGS subunits closer together in a tighter dimer in the Michaelis complex, which poises Arg56 from the adjacent HisGS molecule for crosssubunit stabilisation of the PPi leaving group at the transition state. The more electrostatically pre-organised active site of the holoenzyme likely minimises the reorganisation energy required to accommodate the transition state. This provides a structural basis for allosteric activation in which chemistry is accelerated by facilitating leaving group departure.
The temperature dependence of psychrophilic and mesophilic (R)-3-hydroxybutyrate dehydrogenase steady-state rates yields nonlinear and linear Eyring plots, respectively. Solvent viscosity effects and multiple- and single-turnover pre-steady-state kinetics demonstrate that while product release is rate-limiting at high temperatures for the psychrophilic enzyme, either interconversion between enzyme–substrate and enzyme–product complexes or a step prior to it limits the rate at low temperatures. Unexpectedly, a similar change in the rate-limiting step is observed with the mesophilic enzyme, where a step prior to chemistry becomes rate-limiting at low temperatures. This observation may have implications for past and future interpretations of temperature–rate profiles.
The enzyme ( R )-3-hydroxybutyrate dehydrogenase (HBDH) catalyzes the enantioselective reduction of 3-oxocarboxylates to ( R )-3-hydroxycarboxylates, the monomeric precursors of biodegradable polyesters. Despite its application in asymmetric reduction, which prompted several engineering attempts of this enzyme, the order of chemical events in the active site, their contributions to limit the reaction rate, and interactions between the enzyme and non-native 3-oxocarboxylates have not been explored. Here, a combination of kinetic isotope effects, protein crystallography, and quantum mechanics/molecular mechanics (QM/MM) calculations were employed to dissect the HBDH mechanism. Initial velocity patterns and primary deuterium kinetic isotope effects establish a steady-state ordered kinetic mechanism for acetoacetate reduction by a psychrophilic and a mesophilic HBDH, where hydride transfer is not rate limiting. Primary deuterium kinetic isotope effects on the reduction of 3-oxovalerate indicate that hydride transfer becomes more rate limiting with this non-native substrate. Solvent and multiple deuterium kinetic isotope effects suggest hydride and proton transfers occur in the same transition state. Crystal structures were solved for both enzymes complexed to NAD + :acetoacetate and NAD + :3-oxovalerate, illustrating the structural basis for the stereochemistry of the 3-hydroxycarboxylate products. QM/MM calculations using the crystal structures as a starting point predicted a higher activation energy for 3-oxovalerate reduction catalyzed by the mesophilic HBDH, in agreement with the higher reaction rate observed experimentally for the psychrophilic orthologue. Both transition states show concerted, albeit not synchronous, proton and hydride transfers to 3-oxovalerate. Setting the MM partial charges to zero results in identical reaction activation energies with both orthologues, suggesting the difference in activation energy between the reactions catalyzed by cold- and warm-adapted HBDHs arises from differential electrostatic stabilization of the transition state. Mutagenesis and phylogenetic analysis reveal the catalytic importance of His150 and Asn145 in the respective orthologues.
ATP phosphoribosyltransferase (ATPPRT) catalyzes the first step of histidine biosynthesis in bacteria, namely, the condensation of ATP and 5-phospho-α-D-ribosyl-1-pyrophosphate (PRPP) to generate N 1 -(5-phospho-β-D-ribosyl)-ATP (PRATP) and pyrophosphate. Catalytic (HisG S ) and regulatory (HisZ) subunits assemble in a hetero-octamer where HisZ activates HisG S and mediates allosteric inhibition by histidine. In Acinetobacter baumannnii, HisG S is necessary for the bacterium to persist in the lung during pneumonia. Inhibition of ATPPRT is thus a promising strategy for specific antibiotic development. Here, A. baumannii ATPPRT is shown to follow a rapid equilibrium random kinetic mechanism, unlike any other ATPPRT. Histidine noncompetitively inhibits ATPPRT. Binding kinetics indicates histidine binds to free ATPPRT and to ATPPRT:PRPP and ATPPRT:ATP binary complexes with similar affinity following a twostep binding mechanism, but with distinct kinetic partition of the initial enzyme:inhibitor complex. The dipeptide histidine-proline inhibits ATPPRT competitively and likely uncompetitively, respectively, against PRPP and ATP. Rapid kinetics analysis shows His-Pro binds to the ATPPRT:ATP complex via a two-step binding mechanism. A related HisZ that shares 43% sequence identity with A. baumannii HisZ is a tight-binding allosteric inhibitor of A. baumannii HisG S . These findings lay the foundation for inhibitor design against A. baumannii ATPPRT.
Hydroxybutyrate dehydrogenase (HBDH) catalyzes the NADH-dependent reduction of 3-oxocarboxylates to (R)-3-hydroxycarboxylates. The active sites of a pair of cold-and warm-adapted HBDHs are identical except for a single residue, yet kinetics evaluated at −5, 0, and 5 °C show a much higher steadystate rate constant (k cat ) for the cold-adapted than for the warmadapted HBDH. Intriguingly, single-turnover rate constants (k STO ) are strikingly similar between the two orthologues. Psychrophilic HBDH primary deuterium kinetic isotope effects on k cat ( D k cat ) and k STO ( D k STO ) decrease at lower temperatures, suggesting more efficient hydride transfer relative to other steps as the temperature decreases. However, mesophilic HBDH D k cat and D k STO are generally temperature-independent. The D k STO data allowed calculation of intrinsic primary deuterium kinetic isotope effects. Intrinsic isotope effects of 4.2 and 3.9 for cold-and warm-adapted HBDH, respectively, at 5 °C, supported by quantum mechanics/ molecular mechanics calculations, point to a late transition state for both orthologues. Conversely, intrinsic isotope effects of 5.7 and 3.1 for cold-and warm-adapted HBDH, respectively, at −5 °C indicate the transition state becomes nearly symmetric for the psychrophilic enzyme, but more asymmetric for the mesophilic enzyme. His-to-Asn and Asn-to-His mutations in the psychrophilic and mesophilic HBDH active sites, respectively, swap the single active-site position where these orthologues diverge. At 5 °C, the His-to-Asn mutation in psychrophilic HBDH decreases D k cat to 3.1, suggesting a decrease in transition-state symmetry, while the Histo-Asn mutation in mesophilic HBDH increases D k cat to 4.4, indicating an increase in transition-state symmetry. Hence, temperature adaptation and a single divergent active-site residue may influence transition-state geometry in HBDHs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.