This work is focused on reactive Static Obstacle Avoidance (SOA) methods used to increase the autonomy of Unmanned Surface Vehicles (USVs). Currently, there are multiple approaches to avoid obstacles, which can be applied to different types of USV. In order to assist in the choice of the SOA method for a particular vessel and to accelerate the pretuning process necessary for its implementation, this paper proposes a new AutoTuning Environment for Static Obstacle Avoidance (ATESOA) methods applied to USVs. In this environment, a new simplified modelling of a LIDAR (Laser Imaging Detection and Ranging) sensor is proposed based on numerical simulations. This sensor model provides a realistic environment for the tuning of SOA methods that, due to its low load computation, is used by evolutionary algorithms for the autotuning. In order to analyze the proposed ATESOA, three SOA methods were adapted and implemented to consider the measurements given by the LIDAR model. Furthermore, a mathematical model is proposed and evaluated for using as USV in the simulation enviroment. The results obtained in numerical simulations show how the new ATESOA is able to adjust the SOA methods in scenarios with different obstacle distributions.
In this work, a new pre-tuning multivariable PID (Proportional Integral Derivative) controllers method for quadrotors is put forward. A procedure based on LQR/LQG (Linear Quadratic Regulator/Gaussian) theory is proposed for attitude and altitude control, which suposes a considerable simplification of the design problem due to only one pretuning parameter being used. With the aim to analyze the performance and robustness of the proposed method, a non-linear mathematical model of the DJI-F450 quadrotor is employed, where rotors dynamics, together with sensors drift/bias properties and noise characteristics of low-cost commercial sensors typically used in this type of applications are considered. In order to estimate the state vector and compensate bias/drift effects in the measures, a combination of filtering and data fusion algorithms (Kalman filter and Madgwick algorithm for attitude estimation) are proposed and implemented. Performance and robustness analysis of the control system is carried out by employing numerical simulations, which take into account the presence of uncertainty in the plant model and external disturbances. The obtained results show the proposed controller design method for multivariable PID controller is robust with respect to: (a) parametric uncertainty in the plant model, (b) disturbances acting at the plant input, (c) sensors measurement and estimation errors.
This work is located in a growing sector within the field of renewable energies, wave energy converters (WECs). Specifically, it focuses on one of the point absorber waves (PAWs) of the hybrid platform W2POWER. With the aim of maximizing the mechanical power extracted from the waves by these WECs and reducing their mechanical fatigue, the design of five different model predictive controllers (MPCs) with hard and soft constraints has been carried out. As a contribution of this paper, two of the MPCs have been designed with the addition of an embedded integrator. In order to analyze and compare the MPCs with conventional PI type control, an exhaustive study about performance and robustness is realized through the computer simulations carried out, in which uncertainties in the WEC dynamics and JONSWAP spectrum are considered. The results obtained show how the MPCs with embedded integrator improve power production of the WEC system studied in this work.
In this work a new pre-tuning multivariable PID controllers method for quadrotors is put forward. A procedure based on LQR/LQG theory is proposed for attitude and altitude control. With the aim of analyzing performance and robustness of the proposed method, a non-linear mathematical model of the DJI-F450 quadrotor is employed, where rotors dynamics, togheter with sensors drift/bias properties and noise characteristics of low-cost comercial sensors typically used in this type of applications (such as MARG with MEMS technology and LIDAR) are considered. In order to estimate the state vector and compensate bias/drift effects on rate gyros of the MARG, a combination of filtering and data fusion algorithms (Kalman filter and Madgwick algorithm for attitude estimation) are proposed and implemented. Performance and robutsness analysis of the control system is carried out by means of numerical simulations, which take into account the presence of uncertainty in the plant model and external disturbances. The obtained results show that the proposed pre-tuning method for multivariable PID controller is robust with respect to: a) parametric uncertainty in the plant model, b) disturbances acting at the plant input, c) sensors measurement and estimation errors.One crucial concern to allow the indoor operation of a SUAV is the attitude and position estimation, typically based on the use of inertial measurement units (IMU) and cameras [6,8,[17][18][19][20][21]. To estimate the attitude, position and velocity state variables of the vehicle from the measurements provided by the sensors, a variety of methods are used, such as Kalman filters (KF) [6,18,22,23], extended Kalman filters (EKF) [23][24][25] and complementary filters [4,27] among others.Preprints (www.preprints.org) | NOT PEER-REVIEWED |
This paper is centered on the guidance systems used to increase the autonomy of unmanned surface vehicles (USVs). The new Robust Reactive Static Obstacle Avoidance System (RRSOAS) has been specifically designed for USVs. This algorithm is easily applicable, since previous knowledge of the USV mathematical model and its controllers is not needed. Instead, a new estimated closed-loop model (ECLM) is proposed and used to estimate possible future trajectories. Furthermore, the prediction errors (due to the uncertainty present in the ECLM) are taken into account by modeling the USV’s shape as a time-varying ellipse. Additionally, in order to decrease the computation time, we propose to use a variable prediction horizon and an exponential resolution to discretize the decision space. As environmental model an occupancy probability grid is used, which is updated with the measurements generated by a LIDAR sensor model. Finally, the new RRSOAS is compared with other SOA (static obstacle avoidance) methods. In addition, a robustness study was carried out over a set of random scenarios. The results obtained through numerical simulations indicate that RRSOAS is robust to unknown and congested scenarios in the presence of disturbances, while offering competitive performance with respect to other SOA methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.