Due to their simplicity and operating mode, magnetic loops are one of the most used traffic sensors in Intelligent Transportation Systems (ITS). However, at this moment, their potential is not being fully exploited, as neither the speed nor the length of the vehicles can be surely ascertained with the use of a single magnetic loop. In this way, the vast majority of them are only being used to count vehicles on urban and interurban roads. For this reason, in order to contribute to the development of new traffic sensors and make roads safer, this paper introduces a theoretical study to explain the design and peculiarities of the innovative double loops, how to calculate their magnetic field and three different methods to calculate their inductance. Finally, the different inductance values obtained by these three methods will be analyzed and compared with experimental measurements carried out by our research group in order to know which method is more accurate and if all of them are equally reliable.
In this work, a new pre-tuning multivariable PID (Proportional Integral Derivative) controllers method for quadrotors is put forward. A procedure based on LQR/LQG (Linear Quadratic Regulator/Gaussian) theory is proposed for attitude and altitude control, which suposes a considerable simplification of the design problem due to only one pretuning parameter being used. With the aim to analyze the performance and robustness of the proposed method, a non-linear mathematical model of the DJI-F450 quadrotor is employed, where rotors dynamics, together with sensors drift/bias properties and noise characteristics of low-cost commercial sensors typically used in this type of applications are considered. In order to estimate the state vector and compensate bias/drift effects in the measures, a combination of filtering and data fusion algorithms (Kalman filter and Madgwick algorithm for attitude estimation) are proposed and implemented. Performance and robustness analysis of the control system is carried out by employing numerical simulations, which take into account the presence of uncertainty in the plant model and external disturbances. The obtained results show the proposed controller design method for multivariable PID controller is robust with respect to: (a) parametric uncertainty in the plant model, (b) disturbances acting at the plant input, (c) sensors measurement and estimation errors.
Due to their simplicity and operating mode, magnetic loops are one of the most used traffic sensors in Intelligent Transportation Systems (ITS). However, at this moment, their potential is not being fully exploited, as neither the speed nor the length of the vehicles can be surely ascertained with the use of a single magnetic loop. In this way, nowadays the vast majority of them are only being used to measure traffic flow and count vehicles on urban and interurban roads. This is the reason why we presented in a previous paper the double magnetic loop, capable of improving the features and functionalities of the conventional single loop without increasing the cost or introducing additional complexity. In that paper, it was introduced their design and peculiarities, how to calculate their magnetic field and three different methods to calculate their inductance. Therefore, with the purpose of improving the existing infrastructure and providing it with greater potential and reliability, this paper will focus on justifying and demonstrating the advantages offered by these double loops versus the conventional ones. This will involve analyzing the magnetic profiles generated by the passage of vehicles over double loops and comparing them with those already known. Moreover, it will be shown how the vehicle speed, the traffic direction and many other data can be obtained more easily and with less margin of error by using these new inductance signatures.
There are currently different types of commercial optical disdrometers to measure the rainfall intensity, of which many are commonly used for monitoring road conditions. Having information about the amount of rain, the composition of the precipitation particles and visibility are essential to avoid accidents, which requires intelligent systems that warn drivers and redirect traffic. However, few studies related to Intelligent Transport Systems (ITS) have been performed regarding why these devices are not optimized for this type of applications. Therefore, this paper analyzes and evaluates the operating mode of these equipment through their theoretical model, which will allow the design of prototypes of disdrometers with different characteristics. In addition, this model will be implemented in a simulation program, through which an exhaustive study analyzing how the type of precipitation and its intensity affect the measures provided by the model will be conducted. In this way, the results will help optimize its operation to be thus used in urban settings, which will allow obtaining more accurate real-time information, better traffic management, and a reduction in the number of accidents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.