A tool for the design of a self-excited oscillation of a desired amplitude and frequency in linear plants by means of the variable structure control is proposed. An approximate approach based on the describing function method is given, which requires that the mechanical plant should be a low-pass filter-the hypothesis that usually holds when the oscillations are relatively fast. The proposed approach is demonstrated via the controller design and experiments on the Furuta pendulum.Index Terms-Frequency domain methods, periodic solution, underactuated systems, variable structure systems.
Summary
The problem of output control in multiple‐input–multiple‐output nonlinear systems is addressed. A high‐order sliding‐mode observer is used to estimate the states of the system and identify the discrepancy between the nominal model and the real plant. The exact and finite‐time estimation may be tackled as long as the system presents the algebraic strong observability property. Thus, a continuous robust input‐output linearization strategy can be obtained with respect to a prescribed output. As a consequence, the closed‐loop dynamics performs robustly to uncertainties/perturbations. To illustrate the advantages of the proposed method, we introduce a study case that demands a robust linear system behavior: the self‐oscillations induced in an underactuated mechanical system through a two‐relay controller. Experiments with an inertial wheel pendulum illustrate the feasibility of the proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.